Tokyo J. Math. Vol. 2, No. 1, 1979

The Riemann-Hilbert Problem and its Application to Analytic Functions of Several Complex Variables

Michitake KITA

Sophia University

Introduction

In this paper we shall prove the local existence of holomorphic functions in an analytic cover (a ramified Riemann domain) $\pi: Y \rightarrow X$ by using a solution of the Riemann-Hilbert problem (see §6). The existence of such functions was earlier proved in 1958 by H. Grauert and R. Remmert [10] and in 1960 by R. Kawai [11] by different methods. We can consider the functions on Y as many-valued functions on X which may have the branch points along the critical locus D of the analytic cover $\pi: Y \rightarrow X$. We shall construct such many-valued functions on X from the solutions of the total differential equation (1.1) whose monodromy representation is the one associated with the analytic cover $\pi: Y \rightarrow X$ (see §5). For this purpose, in §3, using the results of P. Deligne [6], we solve the Riemann-Hilbert problem in the following situation; let X be a connected Stein manifold and let D be a divisor of X (not necessarily normal crossing). Suppose that a representation ρ of $\pi_1(X-D, x_0)$ in $\operatorname{GL}_q(C)$ is given. We shall construct a total differential equation (1.1) whose monodromy is the We can study in detail the case of dim X=2 than that of given ρ . dim $X \ge 3$, more precisely, when dim X=2, if $H^2(X, \mathbb{Z})=0$, we can solve the Riemann-Hilbert problem without apparent singularities (Theorem 3). As an application of Proposition 2 of §3, we shall give a remark to the Riemann-Hilbert problem in the restricted sense, when X is a two-dimen-This problem was treated by K. sional connected complex manifold. Aomoto [1] by different method when X is an n-dimensional complex projective space (see §4). In solving the Riemann-Hilbert problem, we do not use the existence of resolution of X satisfying the condition that the inverse image of D is normal crossing, but we use essentially the extension theorems of coherent analytic sheaves of J.-P. Serre [15] and Y.-T. Siu

Received May 24, 1978

Revised March 1, 1979