Токуо Ј. Матн. Vol. 1, No. 1, 1978

On the Volume Elements on an Expansive Set

Hideki OMORI

Tokyo Metropolitan University

In [6], J. Moser proved that the group $\mathscr{D}(M)$ of all C^{∞} -diffeomorphisms of a compact connected C^{∞} -manifold M with $\partial M = \emptyset$ acts transitively on the space \mathscr{V} of all C^{∞} -volume elements with total volume one, where the action is of course given by the pullback $\varphi^* dV$ for $\varphi \in \mathscr{D}(M)$ and $dV \in \mathscr{V}$.

Moreover the mapping $\Phi: \mathscr{D}(M) \to \mathscr{V}$ given by $\Phi(\varphi) = \varphi^* dV$ for any fixed $dV \in \mathscr{V}$ defines a structure of principal fibre bundle with the fibre $\mathscr{D}_{dv}(M) = \{\varphi \in \mathscr{D}(M); \varphi^* dV = dV\}$, where the topologies are given by the C^{∞} -topology. Since \mathscr{V} is convex, the above principal bundle turns out to be trivial, and hence $\mathscr{D}(M)$ is homeomorphic to $\mathscr{D}_{dv}(M) \times \mathscr{V}$ (cf. [8], [1], [9]). Especially, $\mathscr{D}_{dv}(M)$ is homotopically equivalent with $\mathscr{D}(M)$.

The purpose of this note is to show that a little weaker theorem holds for a wider class of compact sets, i.e., orientable expansive sets with nonvoid connected interior 'S such that $S = \overline{S}$. Namely, in such a compact set S, the inclusion $i: \mathscr{D}_{dv}(S) \to \mathscr{D}(S)$ gives a weak homotopy equivalence.

§1. Preliminaries and the precise statement of the theorem.

Let N be an n-dimesional smooth $(C^{\infty}$ -) manifold and S a compact subset of N. By T'_s we denote the restriction of the tangent bundle T_N onto S. Functions, vector fields (sections of T'_s) or p-forms (sections of the exterior product $\bigwedge^p T'_s$) are said to be smooth if they can be extended smoothly on a neighborhood of S in N. A smooth vector field u on S is called a strictly tangent vector field on S if the integral curves of an extension \tilde{u} of u with initial points in S are contained in S for $-\infty < t < \infty$. This property for u does not depend on the choice of extension \tilde{u} . By $\Gamma(T_s)$, we denote the totality of smooth strictly tangent vector fields on S. As it will be proved in the next section, $\Gamma(T_s)$ is a Lie algebra under the usual Lie bracket product and a $\Gamma(1_s)$ -module, where $\Gamma(1_s)$ is the ring of all C^{∞} -functions on S.

Received January 26, 1978