Geometry on Complements of Lines in P^2 ## Shigeru IITAKA University of Tokyo (Communicated by K. Kodaira) ## Introduction. Let $\Delta_0, \dots, \Delta_q$ be projective lines on a complex projective plane P^2 , where $\Delta_i \neq \Delta_j$ for $i \neq j$. We shall study algebro-geometric properties of the complement $S = P^2 - \bigcup \Delta_j$. For instance, we shall compute the logarithmic geometric genus \bar{p}_g , logarithmic irregularity \bar{q} , logarithmic m-genus \bar{P}_m , logarithmic Kodaira dimension $\bar{\kappa}$, logarithmic Chern numbers \bar{c}_1^2 , \bar{c}_2 of S and establish fundamental relations among them. For the definitions of \bar{p}_g , \bar{q} , \bar{P}_m , $\bar{\kappa}$ we refer the reader to [4] and [5]. THEOREM I. $\bar{q}=q$ holds. If $q\geq 2$ and $\bar{p}_g < q-1$, then $S=C\times \Gamma$, $\bar{p}_g=\bar{P}_m=0$ for any $m\geq 1$; $\bar{\kappa}=-\infty$, $\bar{c}_1^2=3-2q$, $\bar{c}_2=1-q$. If $\bar{p}_g=1$, q=2, then $S=C^{*2}$, $\bar{\kappa}=0$ and $\bar{c}_1^2=\bar{c}_2=0$. If $\bar{p}_g=q-1\geq 2$, then $S=C^*\times \Gamma$, $\bar{g}(\Gamma)\geq 2$ and $\bar{\kappa}(S)=\bar{\kappa}(\Gamma)=1$; $\bar{c}_1^2=\bar{c}_2=0$. Finally, if $\bar{p}_g\geq q$, then $\bar{p}_g\geq 2q-4$, $\bar{\kappa}=2$ and $5\bar{c}_2\geq 2\bar{c}_1^2$. Summarizing the results, we obtain the following TABLE | Type of △ | Ē | $ar{q} = q$ | $1-ar{q}+ar{p}_g$ | $ar{oldsymbol{c}_1}^2$ | $ar{c}_2$ | S | |-----------|----|-------------|-----------------------------|------------------------|-------------------------------|--| | | | 0 | 1 | 4 | 1 | C ² | | I | _∞ | 1 | 0 | 0 | 0 | $C \times \Gamma$ | | | | ≧2 | $1- ilde{q}$ | 3-2q | 1-q | $ar{g}(arGamma)\!=\!q\!\geqq\!1$ | | II | 0 | 2 | 0 | 0 | 0 | C*×C* | | $II^1/_2$ | 1 | ≧3 | 0 | 0 | 0 | $C^* \times \Gamma$, $\overline{g}(\Gamma) = q - 1$ | | III | 2 | ≧3 | ≥ 1 $\geq \tilde{q}-3$ | ≧1 | $\geq \frac{2}{5}ar{c}_1{}^2$ | | Here, type of Δ is defined as follows: Received January 1, 1978