Geometry on Complements of Lines in P^2

Shigeru IITAKA

University of Tokyo
(Communicated by K. Kodaira)

Introduction.

Let $\Delta_0, \dots, \Delta_q$ be projective lines on a complex projective plane P^2 , where $\Delta_i \neq \Delta_j$ for $i \neq j$. We shall study algebro-geometric properties of the complement $S = P^2 - \bigcup \Delta_j$. For instance, we shall compute the logarithmic geometric genus \bar{p}_g , logarithmic irregularity \bar{q} , logarithmic m-genus \bar{P}_m , logarithmic Kodaira dimension $\bar{\kappa}$, logarithmic Chern numbers \bar{c}_1^2 , \bar{c}_2 of S and establish fundamental relations among them. For the definitions of \bar{p}_g , \bar{q} , \bar{P}_m , $\bar{\kappa}$ we refer the reader to [4] and [5].

THEOREM I. $\bar{q}=q$ holds. If $q\geq 2$ and $\bar{p}_g < q-1$, then $S=C\times \Gamma$, $\bar{p}_g=\bar{P}_m=0$ for any $m\geq 1$; $\bar{\kappa}=-\infty$, $\bar{c}_1^2=3-2q$, $\bar{c}_2=1-q$. If $\bar{p}_g=1$, q=2, then $S=C^{*2}$, $\bar{\kappa}=0$ and $\bar{c}_1^2=\bar{c}_2=0$. If $\bar{p}_g=q-1\geq 2$, then $S=C^*\times \Gamma$, $\bar{g}(\Gamma)\geq 2$ and $\bar{\kappa}(S)=\bar{\kappa}(\Gamma)=1$; $\bar{c}_1^2=\bar{c}_2=0$. Finally, if $\bar{p}_g\geq q$, then $\bar{p}_g\geq 2q-4$, $\bar{\kappa}=2$ and $5\bar{c}_2\geq 2\bar{c}_1^2$.

Summarizing the results, we obtain the following

TABLE

Type of △	Ē	$ar{q} = q$	$1-ar{q}+ar{p}_g$	$ar{oldsymbol{c}_1}^2$	$ar{c}_2$	S
		0	1	4	1	C ²
I	_∞	1	0	0	0	$C \times \Gamma$
		≧2	$1- ilde{q}$	3-2q	1-q	$ar{g}(arGamma)\!=\!q\!\geqq\!1$
II	0	2	0	0	0	C*×C*
$II^1/_2$	1	≧3	0	0	0	$C^* \times \Gamma$, $\overline{g}(\Gamma) = q - 1$
III	2	≧3	≥ 1 $\geq \tilde{q}-3$	≧1	$\geq \frac{2}{5}ar{c}_1{}^2$	

Here, type of Δ is defined as follows:

Received January 1, 1978