Tokyo J. Math. Vol. 1, No. 2, 1978

The Nonvanishing Property of a Weakly Stationary Process

Tatsuo KAWATA

Keio University

Introduction.

A measurable function f(t) over $-\infty < t < \infty$ with the following property is said to have the nonvanishing property: if there is a function g(z), z=t+iy, analytic on a rectangle $a \le t \le b$, $0 < y \le r$ (or $a \le t \le b$, $-r \le y < 0$) and continuous on $a \le t \le b$, $0 \le y \le r$ (or $a \le t \le b$, $-r \le y \le 0$) for some r > 0 such that f(t) = g(t) almost everywhere in a subinterval interior to (a, b), then f(t) = g(t) should hold almost everywhere throughout (a, b). Such f(t) cannot vanish in any interval unless it is almost everywhere zero over $(-\infty, \infty)$. The situation has been exhaustively studied by Levinson [5], [6], [7], [8]. One of his basic theorems is the following

THEOREM A. Let $f(\lambda)$ be a function of $L^1(-\infty, \infty)$ and its Fourier transform be

(1.1)
$$\widehat{f}(t) = (2\pi)^{-1/2} \int_{-\infty}^{\infty} e^{-it\lambda} f(\lambda) d\lambda .$$

If

(1.2)
$$\widehat{f}(t) = O(\exp(-\theta(t)))$$
, $t \to +\infty$,

where $\theta(t)$ is a nondecreasing function over (c, ∞) for some c > 0 such that

(1.3)
$$\int_{c}^{\infty} \theta(t)/t^{2}dt = \infty ,$$

then $f(\lambda)$ has the nonvanishing property.

Let (Ω, \mathscr{F}, P) be the given probability space and let $X(t, \omega), \omega \in \Omega$, $-\infty < t < \infty$ be a measurable weakly stationary process with $EX(t, \omega)=0$, Received on February 4, 1978