Tokyo J. Math. Vol. 1, No. 2, 1978

On 2p-fold Transitive Permutation Groups

Mitsuo YOSHIZAWA

Gakushuin University

Introduction.

In Yoshizawa [6], the following two theorems were proved.

Theorem A. Let p be an odd prime. Let G be a permutation group on a set $\Omega = \{1, 2, \dots, n\}$ which satisfies the following condition. For any 2p points $\alpha_1, \dots, \alpha_{2p}$ of Ω , a Sylow p-subgroup P of the stabilizer in Gof the 2p points $\alpha_1, \dots, \alpha_{2p}$ is nontrivial and fixes exactly 2p+r points of Ω , and moreover P is semiregular on the set $\Omega - I(P)$ of the remaining n-2p-r points, where r is independent of the choice of $\alpha_1, \dots, \alpha_{2p}$ and $0 \le r \le p-2$. Then n=3p+r, and there exists an orbit Γ of G such that $|\Gamma| \ge 3p$ and $G^r \ge A^r$.

Theorem B. Let p be an odd prime ≥ 11 . Let G be a permutation group on a set $\Omega = \{1, 2, \dots, n\}$ which satisfies the following condition. For any 2p points $\alpha_1, \dots, \alpha_{2p}$ of Ω , a Sylow p-subgroup P of the stabilizer in G of the 2p points $\alpha_1, \dots, \alpha_{2p}$ is nontrivial and fixes exactly 3p-1points of Ω , and moreover P is semiregular on the set $\Omega - I(P)$ of the remaining n-3p+1 points. Then n=4p-1, and one of the following two cases holds: (1) There exists an orbit Γ of G such that $|\Gamma| \geq 3p$ and $G^{\Gamma} \geq A^{\Gamma}$. (2) G has just two orbits Γ_1 and Γ_2 with $|\Gamma_1| \geq p, |\Gamma_2| \geq p$ and $|\Gamma_1| + |\Gamma_2| = 4p-1$, and G^{Γ_i} is $(|\Gamma_i| - p+1)$ -transitive on $\Gamma_i(i=1, 2)$. Moreover, $G^{\Gamma_i} \geq A^{\Gamma_i}$ if $|\Gamma_i| \geq p+3$.

In [1], E. Bannai determined all 2p-fold transitive permutation groups in which the stabilizer of 2p points is of order prime to p, where p is an odd prime. By using Theorem A and Theorem B in [6], we will improve it, namely, we will prove the following result.

THEOREM 1. Let p be an odd prime ≥ 11 , and let q be an odd prime with p < q < p + p/3. Let G be a 2p-fold transitive permutation group on $\Omega = \{1, 2, \dots, n\}$. If the order of $G_{1,2,\dots,2p}$ is not divisible by q, then G is $S_n(2p \leq n \leq 2p+q-1)$ or $A_n(2p+2 \leq n \leq 2p+q-1)$.

Received February 14, 1978