Токуо **Ј. Матн.** Vol. 2, No. 2, 1979

An Analogue of Paley-Wiener Theorem on Rank 1 Semisimple Lie Groups I

Takeshi KAWAZOE

Keio University (Communicated by T. Saito)

In the previous paper [9], we have stated some results on Paley-Wiener type theorems on semisimple Lie groups without proof. In this paper we shall give detailed proofs of those theorems.

§1. Notation and preliminaries.

Let G be a real reductive Lie group with compact center. We assume that G is in class \mathcal{H} (cf. V.S. Varadarajan [10]). Let K be a maximal compact subgroup of G. Fix a Cartan involution θ on G induced by K. Let P be a parabolic subgroup of G, and P=MAN be the associated Langlands decomposition of P. Then M is a reductive group and is in class \mathcal{H} , A is a vector group, which we call the split component of P, and N is the unipotent radical of P. Moreover if P is cuspidal, i.e., $\operatorname{rank}(M) = \operatorname{rank}(K_M)$ $(K_M = K \cap M)$, then there exists a compact Cartan subgroup T of M and H=TA is a Cartan subgroup of G. Now we denote Lie algebras by small German letters and for any real vector space V, we denote by V_c the complex vector space of V and by V^* the dual space of V. Then $\mathfrak{p}=\mathfrak{m}+\mathfrak{a}+\mathfrak{n}$ is the parabolic subalgebra of g corresponding to P. In this case, $A = \exp \alpha$, $N = \exp n$ and P is the normalizer of \mathfrak{p} in G. Let \mathscr{F} be the dual space of \mathfrak{a} , i.e., $\mathscr{F} = \mathfrak{a}^*$.

Let $\tau = (\tau_1, \tau_2)$ be a unitary double representation of K on a finite dimensional Hilbert space V. Here we assume that V satisfies the conditions in Harish-Chandra [6] §8. Then we define the V-valued Schwartz space $\mathscr{C}(G, V)$ and the subspace of τ -spherical functions $\mathscr{C}(G, \tau)$ as usual. Moreover we denote by ${}^{\circ}\mathscr{C}(G, \tau)$ the space of τ -spherical cusp forms on G. Next let τ_M be a representation of K_M on V which is the restriction of τ to K_M . Then we can also define $\mathscr{C}(M, V), \mathscr{C}(M, \tau_M)$ and ${}^{\circ}\mathscr{C}(M, \tau_M)$ respectively.

Received May 18, 1979.