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A finite algebraic number field $K$ is said to be euclidean if, for any
integers $\alpha$ and $\beta(\neq 0)$ of $K$, there is an integer $\gamma$ of $K$ such that
$|N_{K}(\alpha-\beta\gamma)|<|N_{K}\beta|$ . It is well-known that there are exactly 21 quadratic
euclidean fields (see E. S. Bernes and H. P. F. Swinnerton-Dyer [1]).
As for cubic fields H. Davenport [4] showed that there are only a finite
number of euclidean fields which are not totally real. There are several
finiteness theorems like this. H. Heilbronn [2], [3], showed that, if $p$ is
a prime then the number of cyclic euclidean fields of degree $p$ is finite.
H. Davenport [5] (cf. J. W. S. Cassels [6]) also proved the finiteness of
the number of totally imaginary quartic euclidean fields.

In this paper we shall prove the following

THEOREM. There exist only a finite number of quartic euclidean
fields of the form $Q(\sqrt[4]{m})$ , where $m$ is $a$ 4th power-free rational integer
not expressible as 2 $p^{2}$ with a prime $p\equiv 3(mod 8)$ .

In proving Theorem we can restrict our consideration to some special
forms of quartic fields. Indeed for the fields $Q(\sqrt[4]{-m})$ , where $m$ is a
positive integer, the finiteness follows from the result of Davenport
mentioned above. Further C. J. Parry [7] proved that the class number
of the field $Q(\sqrt[4]{m})$ with a positive integer $m$ is even except those of
the following forms

(I) $Q(\sqrt[4]{p})p\equiv 5(mod 8),$ $Q(\sqrt[4]{4p})p\equiv 5(mod 8)$ ,
(II) $Q(\#\overline{p})p\equiv 3(mod 8),$ $Q(\sqrt[4]{2p})p\equiv 3(mod 8)$ ,

$Q(\sqrt[4]{4p})p\equiv 3,7(mod 8),$ $Q(\sqrt{8p})p\equiv 3(mod 8)$ ,
(III) $Q(\sqrt[4]{2p^{2}})p\equiv 3(mod 8),$ $Q(\forall\overline{2})$ ,

where $p$ is a rational prime. Thus our theorem is reduced to the state-
ment that the number of euclidean fields of the form (I) or (II) is finite,
since an algebraic number field of class number greater than one is not
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