A Generalization of the Fourier-Borel Transformation for the Analytic Functionals with non Convex Carrier

Mitsuo MORIMOTO

Sophia University and Université de Nancy I

Introduction

Let K be a compact set of C. For an analytic functional with carrier in K, $T \in \mathcal{O}'(K)$, we define the Fourier-Borel transformation by

$$\mathscr{F}(T)(u) = \langle T_z, \exp(uz) \rangle.$$

If K is convex, it is classical that the Fourier-Borel transformation establishes a linear isomorphism of the space $\mathcal{O}'(K)$ onto the space of the entire functions of exponential type in K, $\operatorname{Exp}(C, K)$. (Polya's representation, see for example Chapter 5 of Boas [1]. For the general theory of the Fourier-Borel transformation, see Martineau [6].) If K is not convex, this theorem is false. We shall consider in this paper the case where K is an annulus with center at the origin. Let $\lambda \neq 0$ be a fixed complex number. For $T \in \mathcal{O}'(K)$, we define the transformation \mathcal{F}_2 by

(0.2)
$$\mathscr{F}_{\lambda}(T)(u, v) = \left\langle T_z, \exp\left(\lambda\left(uz + \frac{v}{z}\right)\right)\right\rangle.$$

This simple transformation \mathcal{F}_{λ} generalizes the Fourier-Borel transformation in the case of annulus and we can determine the image of $\mathcal{O}'(K)$ under the transformation \mathcal{F}_{λ} (Theorem 4.2). (Kiselman [4] and Martineau [7] considered another kind of generalizations of the Fourier-Borel transformation.)

On the other hand, let S^{n-1} be the n-1 dimensional sphere and $\mathscr{B}(S^{n-1}) = \mathscr{A}'(S^{n-1})$ the space of hyperfunctions (analytic functionals) on the sphere. For $T \in \mathscr{B}(S^{n-1})$, Hashizume, Kowata, Minemura and Okamoto [2] defined the transformation \mathscr{P}_{λ} by

(0.3)
$$\mathscr{S}_{\lambda}(T)(x) = \langle T_{\omega}, \exp(i\lambda \langle x, \omega \rangle) \rangle$$
.

Received July 6, 1979