TOKYO J. MATH. Vol. 2. No. 2, 1979

The Riemann-Hilbert Problem in Several Complex Variables II

Michitake KITA

Sophia University

Introduction

In the preceding paper [6], the author proved that, in a two-dimensional connected Stein manifold X satisfying the condition $H^2(X, Z)=0$, one can solve the Riemann-Hilbert problem without apparent singularities for an arbitrary divisor D and an arbitrary representation of $\pi_1(X-D, *)$ into $GL_q(C)$. The purpose of the present paper is to give an example of the Riemann-Hilbert problem which cannot be solved without apparent singularities by the same method as in the two-dimensional case. More precisely, let S be a 3-dimensional polydisc; then, by a result of H. Lindel [7], there exists a special divisor D of S such that we can construct a flat vector bundle V of rank q over S-D satisfying the following conditions:

1) There exists an integrable holomorphic connection \mathcal{V} on $\mathcal{O}(V)$ such that $\operatorname{Ker} \mathcal{V} = \mathcal{C}(V)$ where $\mathcal{C}(V)$ is the sheaf of germs of locally constant sections of V.

2) $\mathcal{O}(V)$ is extended to a locally free analytic sheaf \mathcal{H} on $S-\operatorname{Sing}(D)$ on which V is the meromorphic connection with logarithmic poles along $D \cap (S-\operatorname{Sing}(D))$. The eigenvalues $\alpha_1, \dots, \alpha_q$ of the residue of V at any point of $D-\operatorname{Sing}(D)$ are rational numbers and satisfy the inequalities $0 \leq \alpha_i < 1$ for $i=1, \dots, q$.

3) \mathscr{H} is extended uniquely to a coherent analytic sheaf $\widetilde{\mathscr{H}}$ on S satisfying $\widetilde{\mathscr{H}}^{[1]} = \widetilde{\mathscr{H}}$, but \mathscr{H} cannot be extended to any locally free analytic sheaf on S, where $\widetilde{\mathscr{H}}^{[1]}$ is the first absolute gap-sheaf of $\widetilde{\mathscr{H}}$ (for the definition of absolute gap-sheaves, see [9]).

It seems to the author that if, in three dimension, one wants to solve the Riemann-Hilbert problem without apparent singularities even in the local sense, one should study in detail the Manin extension (See 1.2.) and the structure of vector bundles which are meromorphic along a divisor (see [3]), and should take deeper consideration on the equation Received June 28, 1978