On Unimodal Linear Transformations and Chaos II

Shunji ITO, Shigeru TANAKA and Hitoshi NAKADA

Tsuda College and Keio University

Introduction

In part II we consider the general unimodal linear transformations, that is, a family of maps from [0,1] into itself which take the extremum at c for some $c \in (0,1)$ and are linear on each intervals [0,c] and [c,1]. It is not difficult to show that, except for some trivial exceptions, the consideration of the general unimodal linear transformations defined above can be reduced to that of the special class $\{f_{a,b}; b>1, ab>1, ab>1, a+b\geq ab\}$ defined in the following way:

$$f_{a,b}(x) = \left\{egin{array}{ll} ax + rac{a+b-ab}{b} & ext{for} & 0 \leq x \leq 1 - rac{1}{b} \ -b(x-1) & ext{for} & 1 - rac{1}{b} \leq x \leq 1 \end{array}
ight..$$

In the cases which will be discussed below there will appear phenomena called "window" and "islands", which did not occur in the case a=b of part I. Let us explain these cases, dividing the case b=4 into several classes according to the behavior of the corresponding $f_{a,b}$.

1) The case of 0 < a < 1/4 (that is, the case of ab < 1).

In this case, there exists a unique periodic orbit with period 2 and all points except the fixed point approach this periodic orbit. So this class is a stable class, and we omit this class from further consideration.

2) The case of a=1/4 (that is, the case of ab=1).

Let $A_0=[0,3/4]$ and $A_1=[13/16,1]$, then we have $f_{a,b}A_0=A_1$, $f_{a,b}A_1=A_0$, and $f_{a,b}^*|_{A_i}$ is the identity map on $A_i(i=0,1)$ and every orbit starting from $(3/4,13/16)-\{4/5\}$ enters into $A_0\cup A_1$. So, this class is also stable.

3) The case of $1/4 < a \le 4/15$ (that is, the case of ab > 1, $(a+b-ab)/b \ge b/(b+1)$).

There exist a natural number m and intervals A_0 , A_1 , \cdots , A_{2^m-1} such that $f_{a,b}A_i = A_{i+1}$ for $0 \le i \le 2^m - 2$ and $f_{a,b}A_{2^m-1} = A_0$, and every orbit starting from $[0,1] - \bigcup_{i=0}^{2^{m-1}} A_i$ (except the fixed point of $f_{a,b}^{2^m}$) enters into