Токуо Ј. Матн. Vol. 4, No. 1, 1981

Spectral Property of Goursat Problems

Masafumi YOSHINO

Tokyo Metropolitan University

Introduction

In the study of Goursat problems, a "spectral radius" plays an important role (see [1]). For example, let us take the Goursat problem studied by J. Leray in [4]

(1)
$$\varepsilon u_{x_1x_2} = u_{x_1x_1} + u_{x_2x_2} + h(x_1, x_2)$$
$$u(x_1, 0) \equiv u(0, x_2) \equiv 0$$

where $(x_1, x_2) \in C^2$ and $h(x_1, x_2)$ is analytic in a neighborhood of the origin. The spectral radius of (1) is 2 and if the condition $|\varepsilon| > 2$ is satisfied (1) has one and only one analytic solution in a neighborhood of the origin.

On the other hand the result when $|\varepsilon| < 2$ is rare. As far as the author knows, the best work known hitherto is that of Leray's in [4]. He introduced the function

$$\rho(t) = \liminf_{k \to \infty} |\sin(k\pi t)|^{1/k}$$

with $\varepsilon = 2 \cos(\pi t)$ and showed that if the condition $\rho(t) > 0$ is satisfied, (1) has one and only one analytic solution.

In this paper we shall extend Leray's results and give sufficient conditions for the existence and uniqueness of the solution when $\rho(t)=0$. We also give the eigenfunction expansion of the solution and using this we shall study the regularity of the solution with respect to ε .

§ 1. Notations and results.

Let $x = (x_1, \dots, x_d)$ be the variable in complex *d*-dimensional space C^d with $d \ge 2$. We use multi-indices $\alpha = (\alpha_1, \dots, \alpha_d) \in Z^d$ with $|\alpha| = \alpha_1 + \dots + \alpha_d$ where Z denotes the set of integers. We denote by

Received November 26, 1979 Revised November 8, 1980