TOKYO J. MATH. Vol. 4, No. 1, 1981

The Microlocal Structure of Weighted Homogeneous Polynomials Associated with Coxeter Systems, II

Tamaki YANO and Jiro SEKIGUCHI

Saitama University and Tokyo Metropolitan University

Introduction

This paper is a continuation of the previous paper [9]. We retain the notation used there.

Let (W, S) be a finite Coxeter system. If the rank of W is l, there exist l-number of algebraically independent W-invariant polynomials x_1, \dots, x_l which freely generate the W-invariant ring. Let $f_W(x_1, \dots, x_l)$ be the square of an anti-invariant of W. Then there exist vector fields X_1, \dots, X_l such that they form a free basis of the Lie algebra of vector fields thereby the set $\{x \in C^l; f_W(x)=0\}$ being left invariant. In particular, we have $X_i f_W = c_i(x) f_W$ with a certain polynomial $c_i(x)$ $(i=1, \dots, l)$. We studied in [9] the microlocal structure of the \mathcal{D}_{cl} -Module

$$\mathcal{N}_{\alpha}' = \mathcal{D}_{C^{l}} / \sum_{i=1}^{l} \mathcal{D}_{C^{l}}(X_{i} - \alpha c_{i}(x)) \quad (\alpha \in C) .$$

The main purpose of this paper is to determine the holonomy diagram of the system \mathcal{N}_{α}' for an irreducible finite Coxeter system (except of types E_7 and E_8), which gives enough information for the system \mathcal{N}_{α}' .

In connection with the study, we shall also obtain rather computational results concerning the basic invariants x_1, \dots, x_l , which are complementary to our study but may be useful to the theory of logarithmic poles developed by Professor K. Saito (cf. [4]). Since we have only intermediate results when W is of type E_7 or E_8 , we treat in this paper the Coxeter systems of types A_l , B_l , D_l , E_6 , F_4 , G_2 , H_8 , H_4 , $I_2(p)$.

§1. The holonomy diagram.

(1.1) We begin with explaining the holonomy diagram of a holonomic system. The holonomy diagram gives enough information for the holonomic system. A typical application will be seen in [3].

Received July 6, 1979