Tokyo J. Math. Vol. 4, No. 2, 1981

Metrical Theory for a Class of Continued Fraction Transformations and Their Natural Extensions

Hitoshi NAKADA

Keio University

Introduction

In this article we consider the class of continued fraction transformations $\{f_{\alpha}\}$ including the transformations associated with continued fractions to the nearest integer, singular continued fractions and with simple continued fractions. Here f_{α} , $1/2 \leq \alpha \leq 1$, is defined by

 $f_{\alpha}(x) = \left|\frac{1}{x}\right| - \left[\left|\frac{1}{x}\right| + 1 - \alpha\right] \quad \text{for} \quad x \neq 0, \ x \in [\alpha - 1, \alpha) \ .$

Many results concerning the metrical theory for the simple continued fractions had been given by Gauss, Lévy, Khintchine, etc., (see Billingsley [1]). On the other hand, the metrical theory of continued fractions to the nearest integer or of singular continued fractions has been discussed by Rieger [7], [8] and [9], in which he obtained among other things the invariant measures for these transformations.

In contrast with $\{f_{\alpha}\}$, recently Ito and Tanaka [3] considered the class of transformations $\{S_{\alpha}\}$ including those associated with the restriction to the real axis of Hurwitz' complex continued fractions and of simple continued fractions. Here S_{α} , $1/2 \leq \alpha \leq 1$, is defined by

$$S_{\alpha}(x) = \frac{1}{x} - \left[\frac{1}{x} + 1 - \alpha\right]$$
 for $x \neq 0, x \in [\alpha - 1, \alpha)$;

they have obtained the absolutely continuous invariant measures and computed entropies $h(S_{\alpha})$ with respect to them for the cases of $1/2 \leq \alpha \leq (\sqrt{5}-1)/2$.

In this note, first we will show the convergence of expansions with respect to f_{α} and some fundamental properties. The essential property of $\{f_{\alpha}\}$ is that the denominators q_n of the *n*-th approximants with respect to f_{α} are always positive in contrast with the case of S_{α} . Next we will Received August 29, 1980