Tokyo J. Math. Vol. 4, No. 2, 1981

On an Average of $\omega(n)$ with Respect to Some Sets of Composite Integers

Leo MURATA

Tokyo Metropolitan University (Communicated by K. Ogiue)

Throughout this paper we shall use the following notations: N: the set of all positive integers,

P: the set of all rational prime numbers,

 $N(x) = \{n \in N; n \leq x\}$ (for x: real),

S(x): a subset of N(x),

#(S(x)): the cardinal number of S(x),

 $\omega(n)$: the number of distinct prime factors of n,

 $\Omega(n)$: the total number of prime factors of n,

 $||n||: \min(|n-p|)$, i.e., the distance from n to its nearest prime.

The letters p, q will always denote prime numbers. We shall write $\log_2 x = \log \log x$ and $\log_3 x = \log \log \log x$, and use $\pi(x)$, $\pi(x; k, l)$ and Li(x) in the usual sense.

§1. Statement of results.

Since the value of $\omega(n)$ or that of $\{\Omega(n) - \omega(n)\}$ fluctuates irregularly, we shall observe

$$V(S(x)) = \frac{\sum_{n \in S(x)} \omega(n)}{\#(S(x))} , \qquad W(S(x)) = \frac{\sum_{n \in S(x)} \{\Omega(n) - \omega(n)\}}{\#(S(x))} ,$$

each of which can be regarded as an average of $\omega(n)$ or that of $\{\Omega(n) - \omega(n)\}$ for a given subset S(x). For S(x) = N(x), the value of V(N(x)) or that of W(N(x)) is, so to speak, "standard" average of $\omega(n)$ or that of $\{\Omega(n) - \omega(n)\}$. As is well known ([1: THEOREM 430]):

(1.1)
$$V(N(x)) = \log_2 x + A + O\left(\frac{1}{\log x}\right),$$

Received November 27, 1980