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Introduction

The purpose of this paper is to give a necessary and sufficient
condition for space curves on a non-singular cubic surface in $P^{s}$ to be
arithmetically Cohen-Macaulay. It is known that arithmetically Cohen-
Macaulay curves form a smooth open subset in the Hilbert scheme $Hilb_{P^{3}}^{p(z)}$

parametrizing curves in $P^{3}$ ([2], Th\’eor\‘em 2). Also the dimension of the
Hilbert scheme at a point corresponding to such a curve is calculated in
[2], using the free resolution of the curve. There are essentially twelve
types of arithmetically Cohen-Macaulay curves on a non-singular cubic
surface in $P^{3}$ . We shall prove this in \S 2 and \S 3. In \S 4, we shall
determine free resolutions of these curves. We can determine the arith-
metic genus and the degree of the curve by the free resolution.
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\S 1. Statement of the Result.

Let $X$ be a non-singular cubic surface in the projective 3-space $P^{3}$

over an algebraically closed field of arbitrary characteristic. Then $X$ is
obtained from $P^{2}$ by blowing-up six points $P_{1},$

$\cdots,$
$P_{6}$ which are not on

a conic and no three of which are collinear. We denote by $E$ the ex-
ceptional curve corresponding to $P_{i}(i=1, \cdots, 6)$ , and $L$ the total trans-
form of a line in $P^{2}$ . Then Pic $X\cong Z^{7}$ , with free basis $[L],$ $[E_{1}],$

$\cdots,$
$[E_{6}]$

where $[L],$ $[E_{i}]$ are the linear equivalence class of $L,$ $E_{i}$ respectively,
with intersection numbers

$(_{L^{2}=1}^{E\cdot E_{j}=-\delta_{ij}}$

$1\leqq i,$ $j\leqq 6$

$|_{L\cdot E_{i}=0}$
$1\leqq i\leqq 6$ .
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