Tokyo J. Math. Vol. 4, No. 2, 1981

Totally Real Parallel Submanifolds in $P^n(c)$

Hiroo NAITOH*

Yamaguchi University (Communicated by Y. Kawada)

Introduction

It is an interesting problem to classify the parallel submanifolds in a specific riemannian symmetric space. Actually, these submanifolds have been classified by D. Ferus [5], [6], [7] when the ambient space is the Euclidean space or the Euclidean sphere, and by M. Takeuchi [17] when the ambient space is the real hyperbolic space. Moreover H. Nakagawa and R. Takagi [10] and M. Takeuchi [16] have classified the parallel Kähler submanifolds in the complex projective space $P^n(c)$ with constant holomorphic sectional curvature c. It is known that parallel non-Kähler submanifolds in $P^n(c)$ are totally real.

In this paper we study n-dimensional complete totally real parallel submanifolds in $P^{n}(c)$. It is known that a riemannian manifold which admits a parallel isometric immersion into a riemannian symmetric space Fix an *n*-dimensional simply connected is a locally symmetric space. riemannian symmetric space M^n . Let $\overline{\mathcal{T}}_{M}$ (resp. $\overline{\mathcal{S}}_{M}$) be the set of all equivalence classes of totally real parallel isometric immersions of M^n into $P^{n}(c)$ (resp. of complete totally real parallel submanifolds in $P^{n}(c)$ with the universal riemannian covering M^n). Moreover, in section 3 we define an equivalence relation among symmetric trilinear forms on a tangent space of M satisfying certain conditions, and denote by \mathcal{M}_{M} the set of all equivalence classes of these trilinear forms. In sections 2, 3, we shall show that there are the natural correspondences among these sets $\overline{\mathcal{T}}_{M}, \overline{\mathcal{T}}_{M}, \overline{\mathcal{M}}_{M}$. In sections 4, 5, we shall determine the set $\overline{\mathcal{M}}_{M}$ for a riemannian symmetric space M without Euclidean factor. Moreover, in section 6, we shall study the set $\overline{\mathcal{M}}_{M}$ for a riemannian symmetric space M with Euclidean factor and an interesting example in the geometry of totally real surfaces in $P^{2}(c)$.

Received October 20, 1980

* Partially supported by the Yukawa Fellowship.