Токуо Ј. Матн. Vol. 4, No. 2, 1981

On Regular Fréchet-Lie Groups III

A Second Cohomology Class Related to the Lie Algebra of Pseudo-Differential Operators of Order One

Hideki OMORI, Yoshiaki MAEDA, Akira YOSHIOKA and Osamu KOBAYASHI

Okayama University, Keio University and Tokyo Metropolitan University

Introduction

Fourier integral operators have been defined by Hörmander [5], and developed extensively by himself and many other authors as a tool of studying fundamental solutions of Cauchy problems of pseudo-differential equations of hyperbolic type. However, if we deal with a Fourier integral operator F defined on a manifold, we see immediately that the expression of F contains usually a huge ambiguity. Phase functions and amplitude functions do not have invariant meanings under the change of local coordinate systems, and the rule of coordinate transformations is usually a very complicated one. Therefore, there arise several difficulties to define a topology, for instance, on the space \mathscr{F}^0 of all Fourier integral operators of order 0.

In [11], we gave a sort of global expression of Fourier integral operators and in [12] we defined a "vicinity" \mathfrak{N} of the identity operator in the space \mathscr{F}° such that \mathfrak{N} satisfies the properties of a topological local group. Moreover we have shown in [11] that $F \in \mathfrak{N}$ can be expressed in an "almost" unique fashion, if we fix a C^{∞} riemannian metric on N.

Let us explain this situation at first. Let $\mathscr{D}_{\mathcal{Q}}^{(1)}$ be the group of all symplectic transformations of order one on $T^*N-\{0\}$, where T^*N is the cotangent bundle a closed C^{∞} riemannian manifold N. It is known that $\mathscr{D}_{\mathcal{Q}}^{(1)}$ is isomorphic to the group $\mathscr{D}_{\omega}(S^*N)$ of all contact transformations on the unit cosphere bundle S^*N . Since $\mathscr{D}_{\omega}(S^*N)$ is a topological group under the C^{∞} topology, we give the same topology on $\mathscr{D}_{\mathcal{Q}}^{(1)}$ through

Received October 6, 1980