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Introduction

Fourier integral operators have been defined by Hormander [5], and
developed extensively by himself and many other authors as a tool of
studying fundamental solutions of Cauchy problems of pseudo-differential
equations of hyperbolic type. However, if we deal with a Fourier integral
operator $F$ defined on a manifold, we see immediately that the expression
of $F$ contains usually a huge ambiguity. Phase functions and amplitude
functions do not have invariant meanings under tha change of local
coordinate systems, and the rule of coordinate transformations is usually
a very complicated one. Therefore, there arise several difficulties to
define a topology, for instance, on the space $\mathscr{G}^{-0}$ of all Fourier integral
operators of order $0$ .

In [11], we gave a sort of global expression of Fourier integral
operators and in [12] we defined a ”vicinity” $\mathfrak{R}$ of the identity operator
in the space $F^{0}$ such that $\mathfrak{R}$ satisfies the properties of a topological
local group. Moreover we have shown in [11] that $F\in \mathfrak{R}$ can be ex-
pressed in an “almost“ unique fashion, if we fix a $C^{\infty}$ riemannian metric
on $N$.

Let us explain this situation at first. Let $\mathcal{D}_{\rho}^{(1)}$ be the group of all
symplectic transformations of order one on $T^{*}N-\{0\}$ , where $T^{*}N$ is the
cotangent bundle a closed $C^{\infty}$ riemannian manifold $N$. It is known that
$\mathcal{D}_{D}^{(1)}$ is isomorphic to the group $\mathcal{D}_{\omega}(S^{*}N)$ of all contact transformations
on the unit cosphere bundle $S^{*}N$. Since $\mathcal{D}_{\omega}(S^{*}N)$ is a topological group

under. the $C^{\infty}$ topology, we give the same topology on $\mathcal{D}_{\Omega}^{(1)}$ through

Received October 6, 1980


