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Introduction

In the previous paper [8], we gave a differential geometrical expression
of Fourier-integral operators on a closed riemannian manifold N without
using local coordinate pathches, which is expressed in the following re-
latively concrete form: (Cf. (19) for the precise meaning of the notations.)
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where p=(@,; ¢,) is a symplectic transformation of order 1 on T*N—{0}.
Although our operators such as (1) form much narrower class than what
was defined by Hormander [3] or Guillemin -Sternberg [2], our expression
contains less ambiguities, and hence one can give a sort of coordinate
system on a “vicinity” of the identity operator of the Fourier-integral
operators of order 0 (cf. Theorem 5.8 [8]). Moreover, the above expres-
sion seems to be convenient for concrete computation of the fundamental
solution of the equation
(2) 2 w=v"1Pu
dt

for a pseudo-differential operator P of order 1 with a real principal
symbol. We shall state the reason in what follows.

Let G.&#° be the group generated by the invertible Fourier-integral
operators of order 0, written in the form (1). We regard G.&° as if it
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