Токуо J. Матн. Vol. 5, No. 1, 1982

Vanishing Theorems of Cohomology Groups with Values in the Sheaves $\mathcal{O}_{inc,\varphi}$ and \mathcal{O}_{dec}

Yutaka SABURI

Sophia University (Communicated by M. Morimoto)

Introduction

In this paper we study vanishing theorems of cohomology groups with values in the sheaves of holomorphic functions with exponential bounds. We treat the sheaf $\mathcal{O}_{inc,\varphi}$ of holomorphic functions with some exponential growth condition and the sheaf \mathcal{O}_{dec} of holomorphic functions with some exponential decay condition. The sheaves $\mathcal{O}_{inc,\varphi}$ and \mathcal{O}_{dec} are proposed by Professors M. Sato and T. Kawai to define modified Fourier hyperfunctions. Those are modifications of the sheaf $\tilde{\mathcal{O}}$ of holomorphic functions with the infra-exponential growth condition and the sheaf $\tilde{\mathcal{O}}$ of holomorphic functions with some exponential decay condition in Kawai [12]. We have two motivations:

The first is to give a foundation for our forthcoming paper (Saburi [26]) on the theory of modified Fourier hyperfunctions.

The second is to improve Kawai's proof of vanishing theorems of cohomology groups with the value in the sheaf $\tilde{\mathcal{O}}$. Our methods of proof are valid for the $\tilde{\mathcal{O}}$ without difficulties.

Kawai proved the Cartan Theorem B and the Malgrange theorem for the sheaf $\widetilde{\mathcal{O}}$ (Theorems 2.1.4 and 3.1.8 in Kawai [12] respectively). His proof of the Cartan Theorem B for the sheaf $\widetilde{\mathcal{O}}$ is somewhat complicated. Moreover it seems to the author that his proof of the Malgrange theorem for the sheaf $\widetilde{\mathcal{O}}$ is not complete.

We give a direct method of the calculation of the cohomology groups with the value in the sheaf $\mathcal{O}_{inc,\varphi}$, and prove the Cartan Theorem B for that sheaf (Theorem I in §1.2). We also prove in details the Malgrange theorem for the sheaf $\mathcal{O}_{inc,\varphi}$ (Theorem III in §1.2).

There are some works relevant to Kawai [12]. Those are Ito-Nagamachi February 26, 1981