Tokyo J. Math. Vol. 5, No. 1, 1982

Standard Subgroups of Type $G_2(3)$

Hiromichi YAMADA

Hitotsubashi University (Communicated by Y. Kawada)

Introduction

A quasisimple subgroup L of a finite group G is said to be standard if $|C_g(L)|$ is even, $|C_g(L) \cap C_g(L)^g|$ is odd for each $g \in G - N_g(L)$, and $[L, L^g] \neq 1$ for each $g \in G$. Let $G_2(3^n)$ denote the Chevalley group of type (G_2) over the finite field $GF(3^n)$. The objective of this paper is to prove the following theorem.

THEOREM. Let G be a finite group which possesses a standard subgroup L such that $L/Z(L) \cong G_2(3)$. Assume that $C_G(L)$ has a cyclic Sylow 2-subgroup and that $LO(G) \not \lhd G$. Then one of the following holds.

(1) $E(G)\cong G_2(9).$

 $(2) \quad E(G)/Z(E(G))\cong G_2(3)\times G_2(3).$

(3) $N_{g}(L)/C_{g}(L) \cong \operatorname{Aut}(G_{2}(3))$ and for an involution z of L, $C_{g}(z)$ has a quasisimple subgroup K which satisfies the following conditions:

(i) $z \in K$, $O_2(K)$ is cyclic of order 4, and $K/O(K) \cong SU_4(3)$.

(ii) $[K, O(C_{G}(z))] = 1.$

(iii) $K/\langle z \rangle$ is a standard subgroup of $C_G(z)/\langle z \rangle$ and $O_2(K)$ is a Sylow 2-subgroup of $C_G(K/\langle z \rangle)$.

We remark that Case (3) does not occur in any known examples of G. Thus it is anticipated that once the classification of finite groups with a standard subgroup of type $PSU_4(3)$ is established, Case (3) will be eliminated. This paper represents a contribution to the program of classifying all finite groups having a standard subgroup of known type.

As usual the method used in the proof is essentially a detailed analysis of 2-local subgroups of G depending heavily on the structure of 2-local subgroups of $G_2(3)$. In this context the group $G_2(3)$ seems to be "small". There are two reasons. First, $G_2(3)$ is of characteristic 2-type (a group X is said to be of *characteristic* 2-type provided $F^*(Y) =$

Received November 18, 1981