A Characterization of Homogeneous Self-dual Cones

Tadashi TSUJI

Mie University
(Communicated by Y. Kawada)

Introduction

A convex cone V in the n-dimensional real number space \mathbb{R}^n is a non-empty open subset of \mathbb{R}^n satisfying the following conditions:

- (1) If $x \in V$ and $\lambda \in R$ with $\lambda > 0$, then $\lambda x \in V$.
- (2) If $x, y \in V$, then $x+y \in V$.
- (3) V contains no full straight line.

We denote by G(V) the group of all linear automorphisms of V, that is,

$$G(V) = \{A \in GL(n); AV = V\}$$
.

If the group G(V) acts transitively on V, then V is called homogeneous. Let \langle , \rangle be an inner product in \mathbb{R}^n . Then the dual cone V^* of V with respect to the inner product \langle , \rangle is defined by

$$V^* = \{y \in \mathbf{R}^n; \langle x, y \rangle > 0 \text{ for every } x \in \overline{V} - (0)\}$$
 ,

where \overline{V} is the topological closure of V in \mathbb{R}^n . A cone V is called *self-dual* if the dual cone V^* of V with respect to a suitable inner product coincides with V. The *characteristic function* φ_V of V is defined on V by

$$\varphi_v(x) = \int_{v^*} \exp{-\langle x, y \rangle} dy$$
,

where dy is a canonical Euclidean measure on \mathbb{R}^n . The characteristic function of a homogeneous convex cone V is determined uniquely up to a constant factor by the following property:

$$\varphi_{v}(Ax) = \varphi_{v}(x)/|\det A|$$

for every $x \in V$, $A \in G(V)$. Let us take a system of linear coordinates (x_1, x_2, \dots, x_n) of \mathbb{R}^n . Then using the characteristic function we can define a G(V)-invariant Riemannian metric g_V on V by