Eta-Function on S^{2n-1}

Ichiro IWASAKI

Gakushuin Uuiversity

Let Y be a compact oriented riemannian manifold of dimension 2n-1, $\Omega^q(Y)$ be the space of all differential q-forms on Y and put $\Omega^{ev}(Y) = \bigoplus_{p=0}^{n-1} \Omega^{2p}(Y)$. Let $A: \Omega^{ev}(Y) \to \Omega^{ev}(Y)$ be a first order differential operator defined by

(1)
$$A\phi = i^{n}(-1)^{p+1}(*d-d*)\phi \qquad (\phi \in \Omega^{2p}(Y))$$

where $i=\sqrt{-1}$, d is the exterior differential and * is the Hodge duality operator. Then A is formally self-adjoint, elliptic and the squre A^2 is the Laplace operator $\Delta = d\delta + \delta d$, where δ is the formal adjoint of d. Therefore A is diagonalizable with real eigenvalues and, of course, the eigenvalues of A can be either positive or negative—they are square roots of the eigenvalues of Δ .

Now let G be a compact group of orientation preserving isometries on Y and suppose that A commutes with the action of G, then the λ -eigenspace E_{λ} of A is a finite dimensional G-module. In this situation, Atiyah-Patodi-Singer [4] defined the so-called "eta-function"

(2)
$$\eta_{A}(g, s) = \sum_{\lambda \neq 0} (\operatorname{sign} \lambda) \operatorname{Tr} (g|E_{\lambda}) \cdot |\lambda|^{-s}$$

for any $g \in G$, where the summation is taken over all distinct eigenvalues of A and $g|E_{\lambda}$ is the transformation induced by g on E_{λ} .

For example, when Y is the circle S^1 and g is rotation through an angle θ , we have already known that

$$\eta_{A}(g,s) = -2i \cdot \sum_{k=1}^{\infty} \frac{\sin k\theta}{k^{s}}$$
,

(see [4, p. 413]), and when Y is the 3-sphere S^3 and g is represented by the matrix $\begin{pmatrix} D(\theta_1) & 0 \\ 0 & D(\theta_2) \end{pmatrix}$, where $D(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ is rotation of R^2 by an angle θ , K. Katase calculated directly this η -function by determining the basis for the eigenspace of A (see [12]). On the other hand, J. J.