TOKYO J. MATH. Vol. 5, No. 2, 1982

Examples of Simply Connected Compact Complex 3-folds

Masahide KATO

Sophia University

In this note, we shall construct a series of compact complex manifolds $\{M_n\}_{n=1,2,3,\cdots}$ of dimension 3 which are non-algebraic and nonkähler with the numerical characters $\pi_1(M_n)=0$, $\pi_2(M_n)=Z$, $b_3(M_n)=4n$, dim $H^1(M_n, \mathcal{O}) \ge n$, and dim $H^1(M_n, \Omega^1) \ge n$, where Ω^p is the sheaf of germs of holomorphic *p*-forms. These examples show, in particular, that, it is impossible to estimate $h^{p,q}(M) = \dim H^q(M, \Omega^p)$ of a compact complex manifold M in terms of its (p+q)-th Betti number, contrary to the case of dimension 2 or the case of kähler manifolds. To construct these examples, we employ a method of connecting two manifolds together to obtain a new one (see §§ 3 and 4).

The discussions with Mr. H. Tsuji was very stimulating, to whom the author would like to express his hearty thanks.

§1. We shall construct, in this section, a complex manifold X of dimension 3 with a projection

$$p\colon X \longrightarrow C$$

such that

(i) $X-p^{-1}(0)$ is biholomorphic to the product of a primary Hopf surface $S_{\alpha} = C^2 - \{0\}/\langle \alpha \rangle$ and $C^* = C - \{0\}$ with $\alpha = \exp 2\pi i \alpha$;

(ii) $p^{-1}(0)$ is simply connected, and is a union of two primary Hopf surfaces biholomorphic to $S_{\beta j} = C^2 - \{0\}/\langle \beta_j \rangle$ (j=0,1) with $\beta_j = \exp 2\pi i b_j$ which intersect each other normally in an elliptic curve, where $a \in C$ is a fixed constant satisfying $\operatorname{Im} a > 0$, $b_0 = a^{-1}$, and $b_1 = (1-a)^{-1}$. Let $a \in C$ be a fixed number such that $\operatorname{Im} a > 0$. Then $\alpha = \exp 2\pi i a$ satisfies $0 < |\alpha| < 1$. The multiplication $\xi \mapsto \alpha \xi$ for $\xi \in C^* = \{\xi \in C: \xi \neq 0\}$ defines a holomorphic automorphism of C^* and the quotient space $C = C^*/\langle \alpha \rangle$ is an elliptic curve. Denote by $[\xi]$ the point on C corresponding to $\xi \in C^*$. Take three copies W_j , j=1, 2, 3, of C^2 , on which we fix standard systems of coordinates (x_j, y_j) . Let $X_j = W_j \times C$, and let (x_j, y_j) :

Received July 28, 1981