Configurations and Invariant Gauss-Manin Connections of Integrals I

Kazuhiko AOMOTO

Nagoya University (Communicated by T. Saito)

Introduction

A sequence of m polynomials f_1, \dots, f_m in $C[x_1, \dots, x_n]$ defines a configuration of hyper-surfaces $S_j: f_j = 0$ in C^n . The space of such configurations, being parametrized by the coefficients of polynomials, can be regarded as an analytic space. On this space, the integrals

$$(\mathbf{J'}) \qquad \qquad \int \!\! f_0^{\lambda_0} f_1^{\lambda_1} \cdots f_m^{\lambda_m} dx_1 \wedge \cdots \wedge dx_n$$

satisfy Gauss-Manin connections or equivalently holonomic systems in the sense of S. S. K. (See [8], [16] and [18].) But generally it seems difficult to get their explicit formulae in global forms. According to the method which has been developed in [1] and [5], in this note we shall give the Gauss-Manin connections for the above integrals in invariant expressions with respect to certain algebraic groups which act on them in a natural way, when f_0 is quadratic and f_1, \dots, f_m are all linear (see the formulae EI_0 , $EII_0 - EII_p$, $EIII_0$, EIV_0 and EV_p). These equations generalize the Schläfli formula for the volume of a spherical simplex (see [2]) and Appell's hyper-geometric functions of type (F_4) (see [10]). In case where f_0 is linear, they have been computed in terms of logarithmic forms and simple rational 1-forms of Grassmann coordinates attached to the configuration of hyper-planes (see [3]).

In Part II of this note, we shall show from the results obtained in Part I, that in case where the exponents $\lambda_0, \lambda_1, \dots, \lambda_m$ are all integers, the integrals can be expressed by means of logarithmic connections of basic algebraic invariants, so that they become hyper-logarithms in the sense