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Introduction

Let $p$ be an odd prime and $r$ an integer with $1\leqq r\leqq(p-3)/2$ . If $p$

divides the numerator of the Bernoulli number $B_{p-(2r+1)}$ , or, equivalently,
if $B_{p-(2t+1)}\equiv 0(mod p)$ , then the pair $(p, p-(2\gamma+1))$ is said to be an
irregular pair. For a given prime $p$ , irregular pairs corresponding
to consecutive integers $r$ are called consecutive irregular pairs. The
existence of consecutive irregular pairs associated with a prime $p$ is
intimately connected with the possibility of finding a nontrivial solution
to the Fermat equation $x^{p}+y^{p}+z^{p}=0$ for the case that $(xyz, p)=1$ . Thus,
Wada [9] proved in 1979:

PROPOSITION 1. If $x^{p}+y^{p}+z^{p}=0$ and $(xyz, p)=1$ , then $B_{p-(2t+1)}\equiv 0$

$(mod p)$ for $r=1,2,$ $\cdots,$
$9$ .

This proposition generalizes earlier results of Kummer (1857) and
Mirimanoff (1905). For a history of the problem, see [8]. The condition
imposed for a solution $x,$ $y,$ $z$ to exist is a very stringent one. Since
looking at all irregular pairs for primes $p<125000[10]$ and $1\leqq r\leqq 9$ , not
even two consecutive pairs are found, nor a single pair appears for $r=3$

or $r=6$ . The following result, which, for sufficiently large values of $p$ ,
is stronger than Wada’s, was proved by Krasner [2] in 1934:

PROPOSITION 2. If $x^{p}+y^{p}+z^{p}=0$ and $(xyz, p)=1$ , and if $p>n_{0}=(45!)^{88}$ ,
then $B_{p-(2r+1)}\equiv 0(mod p)$ for $\gamma=1,2,$ $\cdots,$ $k(p)$ , where $k(p)=[\S/\overline{\log p}]$ .

Note that the assumption of $p>n_{0}$ implies $k(p)\geqq[\sqrt[3]{\log n_{0}}]=22$ . From
Propositions 1 and 2 a number of summation criteria may be derived
using the following result, proved by Ribenboim [7] in 1978:
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