TOKYO J. MATH. VOL. 6, No. 2, 1983

The Criteria of Kummer and Mirimanoff Extended to Include 22 Consecutive Irregular Pairs

Wilfrid KELLER and Günter LOH

University of Hamburg (Communicated by Y. Kawada)

Introduction

Let p be an odd prime and r an integer with $1\leq r\leq (p-3)/2$. If p divides the numerator of the Bernoulli number $B_{p-(2r+1)}$, or, equivalently, if $B_{p-(2r+1)}\equiv 0\pmod{p}$, then the pair $(p, p-(2r+1))$ is said to be an irregular pair. For a given prime p , irregular pairs corresponding to consecutive integers r are called consecutive irregular pairs. The existence of consecutive irregular pairs associated with a prime p is intimately connected with the possibility of finding a nontrivial solution to the Fermat equation $x^{p}+y^{p}+z^{p}=0$ for the case that $(xyz, p)=1$. Thus, Wada [9] proved in 1979:

PROPOSITION 1. If $x^{p}+y^{p}+z^{p}=0$ and $(xyz, p)=1$, then $B_{p-(2t+1)}\equiv 0$ \pmod{p} for $r = 1, 2, \cdots, 9$.

This proposition generalizes earlier results of Kummer (1857) and Mirimanoff (1905). For a history of the problem, see [8]. The condition imposed for a solution x, y, z to exist is a very stringent one. Since looking at all irregular pairs for primes $p<$ 125000 [10] and 1 \leq r \leq 9, not even two consecutive pairs are found, nor a single pair appears for $r=3$ or $r=6$. The following result, which, for sufficiently large values of p , is stronger than Wada's, was proved by Krasner [2] in 1934:

PROPOSITION 2. If $x^{p}+y^{p}+z^{p}=0$ and $(xyz, p)=1$, and if $p>n_{0}=(45!)^{88}$, then $B_{p-(2r+1)}\equiv 0\pmod{p}$ for $r=1,2, \cdots, k(p)$, where $k(p)=[\sqrt[3]{\log p}]$.

Note that the assumption of $p>n_{0}$ implies $k(p)\geq[\sqrt[3]{\log n_{0}}]=22.$ From Propositions 1 and 2 a number of summation criteria may be derived using the following result, proved by Ribenboim [7] in 1978:

Received July 15, 1982