Tokyo J. Math. Vol. 6, No. 2, 1983

A Construction of an Invariant Stable Foliation by the Shadowing Lemma

Michiko YURI

Tsuda College (Communicated by M. Mori)

Introduction

There are many studies on the dynamical properties of one-dimensional maps. For instance, asymptotic behavior and the existence of invariant measures were studied in [1], [2] and [3]. In contrast, in the case of two-dimensional maps the results obtained are not so many. So, it would be usuful to investigate whether there exist two-dimensional maps which can be reduced to one-dimensional maps.

In this paper, to clarify how the behavior of not necessarily differentiable two-dimensional maps is related to that of one-dimensional maps, we investigate the existence of an invariant stable foliation of twodimensional maps by using the shadowing lemma.

Let I=[0,1] and f be a map of piecewise C^{-2} class from I into itself; i.e., there is a finite sequence $0=c_0 < c_1 < \cdots < c_N=1$ of points in Isuch that if $I_i=[c_i, c_{i+1})$ then the restriction of f to I_i is C^2 and there exist $\lim_{x\to c_{i+1}=0} (d^n/dx^n)f(x)$ (n=0,1,2). A sequence of points $\{x_n\}_{n\geq 0}$ is called an ε -pseudo-orbit of f iff $|f(x_n)-x_{n+1}| < \varepsilon$ for $n\geq 0$. Denote sometimes by I_x the interval I_i that contains a point x. A sequence $\{x_n\}_{n\geq 0}$ is called β -traced by $\xi \in I$ iff $|f^n(\xi)-x_n| < \beta$ and $f^n(\xi) \in I_{x_n}$ for $n\geq 0$. We say that (I, f) has the pseudo-orbit-tracing property (abbrev. P.O.T.P) iff for every $\beta > 0$ there exists $\varepsilon = \varepsilon(\beta) > 0$ such that every $\varepsilon(\beta)$ -pseudo-orbit is β -traced by some point $\xi \in I$. We claim that our definition of P. O. T. P is not the same as in R. Bowen (p. 74, (4)).

Throughout this paper, we denote by f'(x) the right or left differential coefficient $(f'_+(x) \text{ or } f'_-(x), \text{ respectively})$ at a discontinuity point x if there is no confusion.

For convenience we write

Received June 30, 1982 Revised May 10, 1983