Homeomorphisms with the Pseudo Orbit Tracing Property of the Cantor Set

Masahito DATEYAMA

Tokyo Metropolitan University
(Communicated by M. Iwano)

Let X be a compact metric space with metric d, and f be a homeomorphism from X onto itself. A sequence $\{x_i\}_{i=-\infty}^{\infty}$ is said to be a δ -pseudo-orbit of f if $d(fx_i, x_{i+1}) < \delta$ holds for all $i \in \mathbb{Z}$. (X, f) is said to have the pseudo orbit tracing property (abbrev. P.O.T.P.) if for every $\varepsilon > 0$ there is $\delta > 0$ such that, for every δ -pseudo-orbit $\{x_i\}_{i=-\infty}^{\infty} \subset X$, there exists an $x \in X$ such that $d(f^ix, x_i) < \varepsilon$ for all $i \in \mathbb{Z}$. Let $C \subset [0, 1]$ be the Cantor set: i.e. C is the set of the numbers $x \in [0, 1]$ with $x = 3^{-1}a_1 + 3^{-2}a_2 + \cdots$ $(a_i = 0 \text{ or } 2 \text{ for } i \ge 1)$. We denote by $\mathscr{H}(C)$ the set of all homeomorphisms on C, and by $\mathscr{P}(C)$ the set of all homeomorphisms with the P.O.T.P.. Define the metric \overline{d} on $\mathscr{H}(C)$ by $\overline{d}(f, g) = \max_{x \in C} d(fx, gx)$, $f, g \in \mathscr{H}(C)$. Then $\mathscr{H}(C)$ is a Banach space.

In this paper we prove:

THEOREM. $\mathscr{S}(C)$ is dense in $\mathscr{H}(C)$.

For $r \ge 1$, we call the set $C \cap [3^{-r}i, 3^{-r}(i+1)]$ $(0 \le i \le 3^r - 1)$ a Cantor subinterval with rank r if $C \cap (3^{-r}i, 3^{-r}(i+1)) \ne \emptyset$. We denote by I(i, r), the i-th Cantor subinterval with the rank r from the left. Clearly $C = \bigcup_{i=1}^{2r} I(i, r)$ and $I(i, r) = I(2i-1, r+1) \cup I(2i, r+1)$. We call $g \in \mathcal{H}(C)$ a generalized permutation if there exists $r \ge 1$ such that the following i) and ii) hold:

- i) For every $1 \le i \le 2^r$, there exist $s = s(i) \ge 1$ and $1 \le j = j(i) \le 2^s$ such that g(I(i, r)) = I(j, s), and
- ii) For every $1 \le i \le 2^r$, there exists $k = k(i) \in R$ such that $g(x) = 3^{r-s(i)}x + k$, $x \in I(i, r)$.

Denote by $\mathscr G$ the set of all generalized permutations. Then $\mathscr G$ is dense in $\mathscr H(C)$. In fact, take $f \in \mathscr H(C)$ and $r \ge 1$. Choose $s \ge 1$ such that $d(x, y) < 3^{-s}$ implies $d(fx, fy) < 3^{-r}$. Then for every $1 \le i \le 2^s$ there exists