Expansion of the Solutions of a Gauss-Manin System at a Point of Infinity

Masatoshi NOUMI
Sophia University

Introduction

Let \(f(x) \) be a polynomial, in \(n \) complex variables \(x = (x_1, \ldots, x_n) \), with an isolated critical point and let \(F_0(t, x) \) be a deformation of \(f(x) \) with parameters \(t = (t_1, \ldots, t_m) \). Setting \(F = t_0 + F_0 \) with a distinguished parameter \(t_0 \), we shall investigate the differential system to be satisfied by the integral of type

\[
\frac{u}{\lambda} = \int \delta^{(2)}(F)dx \quad \text{or} \quad \int F^{-\lambda-1}dx \quad (dx = dx_1 \wedge \cdots \wedge dx_n),
\]

where \(\lambda \) is a (generic) complex number. Roughly speaking, such a Gauss-Manin system defines a meromorphic connection, on the space \(S \) of parameters \((t_0, t) \), at most with poles along its discriminant variety \(D \). Thus, our attention will be paid to the many-valued holomorphic solutions on \(S \backslash D \) of the Gauss-Manin system. In “simple” examples, one can show that a fundamental system \(\Phi(t_0, t) \) of its many-valued holomorphic solutions can be expanded into a power series

\[
\Phi(t_0, t) = \sum_{r=0}^{\infty} \Phi_r(t_0) t_0^{-A-(r+1)I}
\]

convergent near the point \((t_0, t) = (\infty, 0) \) at infinity, where \(-A \) is the matrix of exponents of \(f \) shifted by \(\lambda \). In the present article, we shall determine such an expansion of \(\Phi \) in an explicit manner for typical examples of Gauss-Manin systems.

Our computational results will be given in \(\S 3 \). The polynomial \(f(x) \) to be deformed is assumed there to belong to either of the types

\[
\begin{align*}
(1) & \quad f(x) = x_1^{p_1} + x_2^{p_2} + \cdots + x_n^{p_n} \\
(2) & \quad f(x) = x_1^{p_1} + x_1x_2^{p_2} + x_3^{p_3} + \cdots + x_n^{p_n}.
\end{align*}
\]

Received November 9, 1982