Omega Theorems for Divisor Functions

Shigeru KANEMITSU

Kyushu University
(Communicated by T. Mitsui)

Introduction

In what follows, ε denotes any positive number and c, with or without suffix, denotes a positive absolute constant, not necessarily the same at each occurrence, unless otherwise specified.

Let $B_k(x)$ denote the k-th Bernoulli polynomial, [x] the integral part of x, $P_k(x) := B_k(x-[x])$ the k-th periodic Bernoulli polynomial, $\sigma_r(n) := \sum_{d|n} d^r$ the sum of r-th powers of divisors of n, and define the basic functions $G_{a,k}(x)$ by

$$G_{a,k}(x)$$
: = $\sum_{n \leq x^{1/2}} n^a P_k\left(\frac{x}{n}\right)$

for real a and $k \in \mathbb{N}$.

As is well known, the summatory function of the divisor function $d(n) := \sigma_0(n)$ admits the asymptotic formula

$$\sum_{n \le x} d(n) = x \log x + (2\gamma - 1)x + \Delta(x) ,$$

where $\gamma = 0.5772...$ is the Euler(-Mascheroni) constant and the estimate $\Delta(x) = O(x^{1/2})$ is due to Dirichlet. The problem of estimating the error term $\Delta(x)$ carries the name of the Dirichlet divisor problem, the best known estimate being

$$\Delta(x) = O(x^{85/108+\varepsilon})$$

due to Kolesnik [16], and there is a conjecture that

$$\Delta(x) = O(x^{1/4+\varepsilon}).$$

In view of the well-known asymptotic relation (see e.g. MacLeod [19])

Received July 8, 1983