Tokyo J. Math. Vol. 8, No. 1, 1985

Schur Indices of Some Finite Chevalley Groups of Rank 2, I

Zyozyu OHMORI

Tokyo Metropolitan University

Introduction

Let F_q be a finite field with q elements, of characteristic p. Let us consider the special orthogonal group $SO_{\mathfrak{s}}(q)$ of degree 5 over F_q , the conformal symplectic group $CSp_4(q)$ of degree 4 over F_q and the Chevalley group $G_2(q)$ of type (G_2) over F_q . If p=2, then $CSp_4(q) \simeq F_q^* \times Sp_4(q)$, and the irreducible characters of $Sp_4(2^f)$ were described by H. Enomoto [24]. The character table of $CSp_4(q)$, q odd, was obtained by K. Shinoda in [19] (according to him, the table had also been obtained by S. Reid independently). The characters of $G_2(q)$ were calculated by B. Chang and R. Ree [4] when $p \neq 2$, 3 and by Enomoto [7, 8] when p=2, 3 ([8] has not been published yet). The complete table of characters of $SO_s(q)$, q odd, seems to have not been obtained yet. However much information about it can be gotten from G. Lusztig's theory [15] on the classification of the irreducible representations of finite classical groups (see §3 below). As to the rationality-properties of the characters of these groups, R. Gow has proved in [10] that all the irreducible characters of $Sp_4(q)$, q even, have the Schur index 1 over the field Q of rational numbers. Therefore, if p=2, all the irreducible characters of $CSp_4(q)~(\simeq F_q^* imes Sp_4(q))$ and $SO_s(q)$ $(\simeq Sp_4(q))$ have the Schur index 1 over Q. In this paper we shall prove the following.

MAIN THEOREM. Suppose q is odd. Then all the irreducible characters of $SO_{5}(q)$, $CSp_{4}(q)$ and $G_{2}(q)$ have the Schur index 1 over Q.

It can be shown that all the irreducible characters of $G_2(2^f)$ also have the Schur index 1 over Q. This case will be treated in the subsequent paper.

Now let G be a simple adjoint algebraic group defined and split over F_q , and G(q) be the group of its F_q -points. If the rank of G is 1, then $G(q) = PGL_2(q)$, and if the rank is 2, then G(q) is a homomorphic image Received October 28, 1983