Local Topological Properties of Differentiable Mappings II

[Dedicated to Professor Morio Obata on his sixtieth Birthday]

Takuo FUKUDA

Chiba University
(Communicated by K. Kojima)

Introduction

In the preceding paper [2], it was shown that almost every C^{∞} mapgerm: $(R^n, 0) \rightarrow (R^p, 0)$, $n \leq p$, has rather good topological structures. In particular it was shown that they are topologically equivalent to the cones of topologically stable mappings of S^{n-1} into S^{p-1} , where the cone of a mapping $f: X \rightarrow Y$ is the mapping $Cf: X \times [0, 1)/X \times \{0\} \rightarrow Y \times [0, 1)/Y \times \{0\}$ defined by Cf(x, t) = (f(x), t). Here almost every is used in the rather strong sense that the complement of the set of these map-germs should have infinite codimension in the space of all C^{∞} map-germs.

This paper has two purposes. One is to show similar generic properties for the remaining case n > p. The other is to show, as an application of these generic properties, that for almost every mapping into the plane $f: (R^n, 0) \rightarrow (R^2, 0)$ a Poincare-Hopf type equality, in some cases the Morse inequalities as well, holds between the Betti numbers of the set $f^{-1}(0) \cap S^{n-1}_{\varepsilon}$ and the indices of the singular points of f appearing around the origin, where $S^{n-1}_{\varepsilon} = \{x \in R^n \mid ||x|| = \varepsilon\}$ and ε is supposed to be small. The index of a singular point of a mapping into the plane will be defined later in this section.

Let us explain these properties more precisely. $J^r(n, p)$ is the set of the r-jets of all C^{∞} map-germs: $(R^n, 0) \rightarrow (R^p, 0)$. For a positive number $\varepsilon > 0$, we set

$$D_{\varepsilon}^{m} = \{x \in R^{m} \mid ||x|| \leq \varepsilon\}$$
 , $S_{\varepsilon}^{m-1} = \{x \in R^{m} \mid ||x|| = \varepsilon\}$.

Theorem 1. For each positive integer r, there exists a closed

Received August 23, 1984

This work was partially supported by Australian Research Grant Committee No. 7, L20.205.