Extended Alexander Matrices of 3-Manifolds II

-Applications-

Shinji FUKUHARA

Tsuda College

§1. Statement of results.

In this paper we study 3-manifolds obtained from S^3 by Dehn surgery along knots. Let p be a positive integer and q be an integer relatively prime to p.

DEFINITION. For a knot $k \subset S^3$, let L(p, q; k) be a 3-manifolds obtained from S^3 by Dehn surgery along k with coefficient p/q.

Note that when k is an unknot L(p, q; k) means just a lens space L(p, q). Clearly L(p, q; k) is a homology lens space and $H_1(L(p, q; k)) = \mathbb{Z}_p$ is generated by an element corresponding to a meridian of the tubular neighbourhood N(k) of k. We denote this element by t. Then an element of a group ring $\mathbb{Z}H_1(L(p, q; k)) = \mathbb{Z}[\mathbb{Z}_p]$ can be represented by a polynomial of t with integer coefficients where $t^p = 1$. We give a necessary condition for L(p, q; k) to be a lens space.

THEOREM 1. Let k be a knot with the Alexander polynomial Δ_k . Suppose that L(p, q; k) is homeomorphic to L(p, q'). Let r, r' be integers such that $rq \equiv 1(p)$ and $r'q' \equiv 1(p)$. Then there are $u \in \mathbb{Z}[\mathbb{Z}_p]$ and $l, s \in \mathbb{Z}$ such that (p, s) = 1 which satisfy the equation

$$(1+t+\cdots+t^{r-1})\Delta_k(t)\equiv \pm t^l u \bar{u}(1+t^s+\cdots+t^{s(r'-1)}) \bmod (1+t+\cdots+t^{p-1})$$
in $Z[Z_p]$.

As a corollary we can prove:

THEOREM 2. Let k be a knot with trivial Alexander polynomial. Then L(p, q; k) and L(p, q') can be homeomorphic only if $q \equiv \pm q'(p)$ or $qq' \equiv \pm 1(p)$.

Received May 28, 1984 Revised September 27, 1984