TOKYO J. MATH. Vol. 8, No. 2, 1985

On the Isotropy Subgroup of the Automorphism Group of a Parahermitian Symmetric Space

Soji KANEYUKI and Masato KOZAI

Sophia University

Introduction

Let (M, I, g) be a parahermitian symmetric space [2] which is identified with a co-adjoint orbit of a real simple Lie group with Lie algebra g. Such a manifold M can be expressed as an affine symmetric coset space G/C(Z), where G is the analytic subgroup generated by g in the simply connected Lie group corresponding to the complexification of g, and C(Z) is the centralizer in G of an element $Z \in g$ satisfying the condition (C) (see § 1).

The purpose of this paper is to study the isotropy subgroup C(Z)—the number of its connected components and the structure of the identity component. Our method here is classification-free. A main result is Theorem 3.7, which is efficiently used in Kaneyuki and Williams [3], [4], in applying the method of geometric quantization.

NOTATIONS.

 G° the identity component of a Lie group G,

- G_{α} the set of elements in G left fixed by an automorphism α of G,
- C^* (resp. R^*) the multiplicative group of non-zero complex (resp. real) numbers.
- R^+ the multiplicative group of positive real numbers,

 $i = \sqrt{-1}$.

§1. Symmetric triples.

Let g be a real simple Lie algebra and \mathfrak{h} be a subalgebra of g and σ be an involutive automorphism of g such that \mathfrak{h} is the set of σ -fixed elements in g. Then the triple $\{g, \mathfrak{h}, \sigma\}$ is called a simple symmetric triple. Suppose further that $\{g, \mathfrak{h}, \sigma\}$ satisfies the following condition (C) (which is equivalent to (C_s) in [2]):

Received July 17, 1984