Sherman Transformations for Functions on the Sphere

Ryoko WADA

Sophia University
(Communicated by R. Takahashi)

Introduction

Let $S=S^d$ be the unit sphere in \mathbb{R}^{d+1} . It is well-known that functions and functionals f on S can be developed in the series of the spherical harmonics; $f=\sum_{n=0}^{\infty}f_n$, where f_n are spherical harmonic functions of degree n in (d+1)-dimensions. Certain function spaces or functional spaces on the sphere S can be characterized by the behavior of the sequence $\{\|f_n\|_2\}_{n=0,1,2,\cdots}$ (Lemma 1.1). On the other hand, T.O. Sherman [7] introduced the two transformations $f \to Ff(b, n)$ and $f \to F_*f(b, n)$ and studied the developments of functions or functionals on S using them.

In this paper we propose to replace his transformation F_* by a slightly different transformation F_* :

$$F_*f(b, n) = F_*f_n(b, n)$$
 for $f = \sum_{n=0}^{\infty} f_n$.

Though $F_*f(b, n)$ is well-defined only for some differentiable functions, $F_*f(b, n)$ can be defined for more general functions and functionals. And in the results of Sherman [7] we can replace $F_*f(b, n)$ by $F_*f(b, n)$.

Here Ff(b, n) and $F_*f(b, n)$ are polynomials on the "equator" $B = \{s \in S; s \cdot a = 0\}$, where $a = (0, 0, \dots, 1) \in S$ denotes the "north pole".

The two transformations F and F_* define the mappings:

$$\begin{split} F\colon &f \longrightarrow F(f) = \{Ff(\ ,\ n)\}_{n=0,1}... \in \prod P_n(B) \\ F_\sharp\colon &f \longrightarrow F_\sharp(f) = \{F_\sharp f(\ ,\ n)\}_{n=0,1}... \in \prod P_n(B) \ , \end{split}$$

where $P_n(B) = \{g; \text{ a polynomial on } B \text{ of degree at most } n\}$ and $\prod P_n(B)$ is the direct product of $P_n(B)$ $(n=0, 1, 2, \cdots)$. We call F the Sherman transformation and F_* the modified Sherman transformation respectively. Furthermore, we can consider that F and F_* are dual to each other in