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Introduction

In the linear filter theory, Wiener considered especially a weighting
$K$ in the time domain, i.e. the filters $K*for$ which the response $g$ to an
input signal $f$ is given by

$g(t)=\frac{1}{\sqrt 2\pi}\int_{-\infty}^{\infty}K(t-\tau)f(\tau)d\tau=(K*f)(t)$ , $t\in(-\infty, \infty)$ .
Also, he indicated the importance of admitting as inputs arbitrary signals
of the class $S$. His main theorem in [9] is: If

$(1+|t|)K(t)\in L^{1}\cap L^{2}(-\infty, \infty)$ ,

then the responce of the filter $K$ to a signal $f$ in $S$ is a signal $g\in S’$ , by
using the generalized harmonic analysis (cf. Masani [5]).

In this paper, we shall extend this result to the case of functions of
two variables under a restricted rectangular mean concerning the double
limit process, using the generalized harmonic analysis of functions of two
variables in Matsuoka [6].

Wiener has proved a Tauberian theorem in a generalized sense, with
respect to a weighted moving average of a function which is bounded on
the average. On the other hand, in Anzai, Koizumi and Matsuoka [1],
we have considered the form of general Tauberian theorems about a
weighted moving average $K*f$ of $f$. We shall also extend the above
theorem of Wiener to the case of functions of two variables under a
restricted rectangular mean concerning the double limit process in con-
sideration of the modified form.
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