TOKYO J. MATH. Vol. 9, No. 1, 1986

Examples of Simply Connected Compact Complex 3-folds II

Masahide KATO and Asahiko YAMADA

Sophia University

Introduction

This note is the continuation of [2]. In [2], the first named author has constructed a series of compact complex manifolds $\{M_n\}_{n=1,2,3,\cdots}$ of dimension 3 which are non-algebraic and non-Kaehler with the properties: $\pi_1(M_n)=0, \pi_2(M_n)=\mathbb{Z}, b_3(M_n)=4n, \dim H^1(M_n, \mathcal{O}) \ge n$, and $\dim H^1(M_n, \Omega^1) \ge n$. The present note consists of two sections, § 5, § 6. In section 5, we shall show how to describe differentiable structures of $\{M_n\}$ in terms of connected sums, using a result of C. T. C. Wall [4]. We note, in particular, that M_1 is diffeomorphic to the connected sum of twice $S^3 \times S^3$ and $S^2 \times S^4$; $M_1 \approx 2(S^3 \times S^3) \sharp_i S^2 \times S^4$ and that M_2 is diffeomorphic to that of 4 times $S^8 \times S^3$ and P^3 ; $M_2 \approx 4(S^3 \times S^3) \sharp_i P^3$. Here \sharp_i indicates the usual connected sum in the category of differentiable topology. In section 6, we shall calculate all of their Hodge invariants. We have dim $H^1(M_n, \mathcal{O}) = n$ and dim $H^1(M_n, \Omega^1) = n+1$, while $H_1(M_n, \mathbb{Z}) = 0$ and $H_2(M_n, \mathbb{Z}) = \mathbb{Z}$.

In the following, we shall use the notation in [2].

§ 5. In this section, we shall study the differentiable structures of the compact complex manifolds of dimension 3 $\{M_n\}_{n=1,2,3,...}$, which were constructed in [2].

LEMMA 11.

(v)
$$H_q(M_n, Z) = \begin{cases} Z & q: even, \\ 0 & q=1, 5, \\ Z^{4n} & q=3. \end{cases}$$

(vi) Let l be a projective line in $\Sigma \subset \mathbf{P}^{\mathfrak{s}}$. Then, for any $n \geq 1$, $l_n := i_1(l) \ (\subset M_1^{n-1} \subset M_n)$ represents a generator of $H_2(M_n, \mathbb{Z})$, where $M_1^{\mathfrak{o}}$ is understood to be M_1 .

Received May 23, 1983 Revised November 26, 1984