Токуо Ј. Матн. Vol. 10, No. 1, 1987

Minimal Immersions of Kaehler Manifolds into Complex Space Forms

Seiichi UDAGAWA

Tokyo Metropolitan University (Communicated by K. Ogiue)

Introduction

Let $N^{\mathfrak{m}}(\tilde{c})$ be an *m*-dimensional complex space form of constant holomorphic sectional curvature \tilde{c} , and let (M^n, g) be an *n*-dimensional Kaehler manifold. It is well known that holomorphic isometric immersions of Kaehler manifolds into Kaehler manifolds are minimal immersions. We consider the following problem: Is an isometric minimal immersion $f: (M^n, g) \rightarrow N^{\mathfrak{m}}(\tilde{c})$ a holomorphic or anti-holomorphic immersion? However, it is not true in general. For example, if we take $M^1 = \mathbb{R}H^2(\tilde{c}/4)$ (2dimensional real hyperbolic space of constant curvature $\tilde{c}/4$, $\tilde{c} < 0$) or $M^1 = S^2(\tilde{c}/4)$ (2-dimensional sphere of constant curvature $\tilde{c}/4$, $\tilde{c} > 0$), then we obtain totally real isometric minimal immersions as follows:

(1)
$$M^1 = \mathbf{R} H^2(\widetilde{c}/4) \xrightarrow{\text{totally real, totally geodesic}} CH^m(\widetilde{c})$$
.

where $CH^{m}(\tilde{c})$ is an *m*-dimensional complex hyperbolic space of constant holomorphic sectional curvature \tilde{c} .

$$(2) \qquad M^{1} = S^{2}(\tilde{c}/4) \xrightarrow{\text{natural covering}}{} RP^{2}(\tilde{c}/4)$$

$$\underline{\text{totally real, totally geodesic}} CP^{m}(\tilde{c}),$$

where $CP^{m}(\tilde{c})$ is an *m*-dimensional complex projective space of constant holomorphic sectional curvature \tilde{c} and $RP^{2}(\tilde{c}/4)$ is a 2-dimensional real projective space of constant curvature $\tilde{c}/4$.

In Part I, we prove the following

THEOREM 1. Let $CH^{m}(\tilde{c})$ be an m-dimensional complex hyperbolic space of constant holomorphic sectional curvature \tilde{c} ($\tilde{c} < 0$), and let (M^{n}, g) be an n-dimensional Kaehler manifold such that dim_c $M=n \ge 2$. Then,

Received September 6, 1986