Small Deformations of Certain Compact Manifolds of Class L, II

Asahiko YAMADA

Sophia University
(Communicated by R. Takahashi)

Introduction

In this paper, we shall construct the complete and effectively parametrized complex analytic family of small deformations of a Blanchard manifold. Let P^3 be the complex projective space of dimension 3 with the system of homogeneous coordinates $[z_0: z_1: z_2: z_3]$. We define a projective line in P^3 by

$$l = \{ [z_0: z_1: z_2: z_3] \in P^3: z_2 = z_3 = 0 \}$$

and Z by P^3-l . Let $\alpha={}^t(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, $\beta={}^t(\beta_1, \beta_2, \beta_3, \beta_4)$ be vectors in C^4 such that $\det(\alpha \beta \overline{\alpha} \overline{\beta}) \neq 0$. Then the matrices A_i (i=1, 2, 3, 4) defined by

$$A_{i} = \begin{pmatrix} \alpha_{i} & \beta_{i} \\ -\overline{\beta}_{i} & \overline{\alpha}_{i} \end{pmatrix} \in GL(2, C)$$

satisfy the condition $\det(\sum_{i=1}^{l} r_i A_i) \neq 0$ for any $(r_1, r_2, r_3, r_4) \in \mathbb{R}^4 - \{(0, 0, 0, 0)\}.$ We put

$$G_i = egin{pmatrix} 1 & 0 & & & & \ 0 & 1 & & & & \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

and denote by g_i the automorphism of Z determined by G_i for i=1, 2, 3, 4. Then it is easy to see that the group of automorphisms Γ generated by g_i (i=1, 2, 3, 4) acts on Z properly discontinuously and without fixed points.

DEFINITION 0.1. We define a Blanchard manifold X by the quotient space of Z by Γ .

Received January 17, 1986