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\S 1. Introduction and notation.

Let $R$ be a (commutative integral) domain with quotient field $K$.
One theme of enduring interest has been the study of $R$ by analyzing
properties of its overrings (that is, the rings contained between $R$ and
$K)$ . It seems remarkable that analogous “dual” studies have not been
done in terms of the behavior of the underrings of R. (We shall say
that $B$ is an underring of $R$ in case $B$ is a subring of $R$ also having
quotient field $K.$ ) In [2], one took a first step by characterizing the $R$

such that each underring of $R$ is a Euclidean domain. These domains $R$

were actually studied earlier by Gilmer [3] as the domains each of whose
subrings is a Euclidean domain. In [1, Proposition 2.11], it was shown
that the same domains $R$ are characterized by requiring that each subring
of $R$ is seminormal. (As noted in [4, Theorem 1.1], a domain $D$, with
quotient field $L$ , is seminormal if and only if, whenever $u\in L$ satisfies
$u^{2}\in D$ and $u^{s}\in D$, then $u\in D.$ ) One is naturally led to ask if the same
domains $R$ are characterized by requiring that each underring of $R$ is
seminormal. In [2], this was answered in the affirmative in the special
case $R=K$. Our main result, Theorem 2.2, answers the general question
in the affirmative. Its proof is independent of, and somewhat easier
than, the work in [2].

$R,$ $K$ retain the above meanings throughout, all subrings contain the
1 of the larger ring, ch denotes characteristic, and $F_{p}$ denotes the prime
field of characteristic $p>0$ . Any unexplained material is standard, as in
[5].

\S 2. Results.
In any study of domains via behavior of their underrings, certain
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