Токуо Ј. Матн. Vol. 10, No. 1, 1987

On Seminormal Underrings

Dedicated to Professor Masayoshi Nagata on his 60th birthday

David E. DOBBS and Takeshi ISHIKAWA

University of Tennessee and Tokyo Metropolitan University

§1. Introduction and notation.

Let R be a (commutative integral) domain with quotient field K. One theme of enduring interest has been the study of R by analyzing properties of its overrings (that is, the rings contained between R and K). It seems remarkable that analogous "dual" studies have not been done in terms of the behavior of the underrings of R. (We shall say that B is an underring of R in case B is a subring of R also having quotient field K.) In [2], one took a first step by characterizing the Rsuch that each underring of R is a Euclidean domain. These domains Rwere actually studied earlier by Gilmer [3] as the domains each of whose subrings is a Euclidean domain. In [1, Proposition 2.11], it was shown that the same domains R are characterized by requiring that each subring of R is seminormal. (As noted in [4, Theorem 1.1], a domain D, with quotient field L, is seminormal if and only if, whenever $u \in L$ satisfies $u^2 \in D$ and $u^3 \in D$, then $u \in D$.) One is naturally led to ask if the same domains R are characterized by requiring that each underring of R is seminormal. In [2], this was answered in the affirmative in the special case R = K. Our main result, Theorem 2.2, answers the general question in the affirmative. Its proof is independent of, and somewhat easier than, the work in [2].

R, *K* retain the above meanings throughout, all subrings contain the 1 of the larger ring, ch denotes characteristic, and F_p denotes the prime field of characteristic p>0. Any unexplained material is standard, as in [5].

§2. Results.

In any study of domains via behavior of their underrings, certain Received July 31, 1986