Токуо Ј. Матн. Vol. 10, No. 1, 1987

Appell's Hypergeometric Function F_2 and Periods of Certain Elliptic K3 Surfaces

Seiji NISHIYAMA

Tokyo Metropolitan University (Communicated by S. Tsurumi)

Introduction

In 1880 Appell introduced four types of hypergeometric functions F_1 , F_2 , F_3 and F_4 of two variables. These are generalizations of the Gauss hypergeometric function $F(\alpha, \beta, \gamma, x)$. There are several generalizations of the elliptic modular function $\lambda(\tau)$ or H. A. Schwarz's theory [14] using Appell's F_1 (see E. Picard [8, 9], T. Terada [17], P. Deligne and G. D. Mostow [2], H. Shiga [12, 13]). But there are no remarkable generalizations using F_2 , F_3 and F_4 .

In this paper we shall investigate an automorphic function of two variables derived from $F_2(\alpha, \beta, \beta', \gamma, \gamma', x, y)$ with $\alpha = \beta = \beta' = 1/2$ and $\gamma = \gamma' = 1$. To make the situation clear, let us recall what $\lambda(\tau)$ is. Consider the family \mathscr{F}_0 of the following elliptic curves $C(\lambda)$:

$$C(\lambda): w^2 = u(u-1)(u-\lambda), \quad \lambda \in P_1(C) - \{0, 1, \infty\}.$$

Let $\{\gamma_1, \gamma_2\}$ be a basis of $H_1(C(\lambda), \mathbb{Z})$ and assume that the intersection multiplicity $\gamma_1 \cdot \gamma_2 = -1$. And let ω be a holomorphic 1-form on $C(\lambda)$. Then the periods $\eta_i = \int_{\gamma_i} \omega$ (i=1, 2) satisfy the following differential equation:

$$\lambda(1-\lambda)\frac{d^2z}{d\lambda^2} + (1-2\lambda)\frac{dz}{d\lambda} - \frac{1}{4}z = 0.$$

This is the Gauss differential equation with $\alpha = \beta = 1/2$ and $\gamma = 1$. For the family \mathscr{F}_0 , we define the period map τ on the parameter space $P_1 - \{0, 1, \infty\}$ by $\tau(\lambda) = \eta_1(\lambda)/\eta_2(\lambda)$. Then we have the following:

(1) The image of τ is contained in upper half plane H.

(2) The inverse map $\lambda = \lambda(\tau)$ of τ is a single-valued holomorphic function on H mapped to $P_1 = \{0, 1, \infty\}$, and it is an automorphic function Received May 30, 1986