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Introduction

Various number theoretical transformations, such as transformations
for simple continued fraction [1], nearest integers continued fractions [10],
complex continued fractions [2] [7], Jacobi-Perron’s Algorithm [14], etc.,
have the following structure: Let $X\subset R^{n}$ and $T$ be a map of $X$ onto
itself. Then there exist a partition $\{X_{a}:a\in I\}$ of $X$, and a finite number
of range sets $U_{0},$

$\cdots,$ $U_{N}$ such that $ T^{n}(X_{a_{1}}\cap T^{-1}X_{a_{2}}\cap\cdots\cap T^{-(n-1)}X_{a_{n}})\in$

$\{U_{i}:0\leqq i\leqq N\}$ . The system (X, $T,$ $\{U_{0},$
$\cdots,$ $U_{N}\},$ $\{X_{a};a\in I\}$) with such a

structure will be called a number theoretical $t\tau ansformation$ with finite
range $st\gamma uctu\gamma e$ (see the definition in \S 1).

In this paper, we first summarize ergodic properties of number
theoretical transformations with finite range structure which have already
been obtained in [10] and [8]. Namely, Theorem 1 in \S 1 states that the
number theoretical transformation satisfying a transitivity condition and
Renyi’s condition is ergodic, exact, and admits a finite invariant measure
whose density is bounded. Moreover, according to a result of Schweiger
[15], Theorem 2 gives a sufficient condition in order that such a trans-
formation possesses a $\sigma- finite$ invariant measure. The maps defined by

$T_{1}(\theta, \varphi)=(-[-\frac{1}{\theta}]-\frac{1}{\theta},$ $-[-\frac{\varphi}{\theta}]-\frac{\varphi}{\theta})$

and

$T_{2}(\theta, \varphi)=(-[-\frac{1}{\theta}]-\frac{1}{\theta},$ $\frac{\varphi}{\theta}-[\frac{\varphi}{\theta}])$

are interesting examples in view of number theoretical applications [18]
(cf. (3)).
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