Another Characterization of the Two-Weight Norm Inequalities for the Maximal Operators

Nobuhiko FUJII

Tokai University (Communicated by Y. Kawada)

Introduction

Let ν be a Borel measure on \mathbb{R}^n and set

(0.1)
$$M_{\alpha}\nu(x) = \sup |Q|^{-\alpha} \int_{Q} d|\nu| \qquad (0 < \alpha \leq 1)$$

where the supremum is taken over all the cubes Q in \mathbb{R}^n which contain x and |Q| denotes the Lebesgue measure of Q. Throughout this note we deal with only cubes of the form $\prod_{j=1}^n [x_j, x_j+r)$ where $(x_1, \dots, x_n) \in \mathbb{R}^n$ and r>0. $M_{1-\alpha/n}$, $0<\alpha< n$, is called the fractional maximal operator. When $\alpha=1$, (0.1) is the Hardy-Littlewood maximal function of ν .

Recently E. T. Sawyer [12] showed that for a nonnegative measure ω and a nonnegative function v(x) on \mathbb{R}^n there exists a positive constant C_1 independent of f(x) such that

(0.2)
$$\left(\int_{\mathbb{R}^n} [M_{\alpha}f]^q d\omega \right)^{1/q} \leq C_1 \left(\int_{\mathbb{R}^n} |f|^p v dx \right)^{1/p} \qquad (0 < \alpha \leq 1)$$

for all measurable functions f(x) if and only if there exists a positive constant C_2 independent of cubes Q such that

(0.3)
$$\int_{Q} [M_{\alpha}(\chi_{Q}v^{1-p'})]^{q} d\omega \leq C_{2} \left(\int_{Q} v^{1-p'} \right)^{q/p} < \infty$$

for all cubes Q, where 1 , <math>(1-p)(1-p')=1 and χ_q denotes the characteristic function of Q.

In the case that p=q, $\alpha=1$, ω is a function and $\omega=v$, as it is well known, B. Muckenhoupt [9] showed that (0.2) is valid if and only if ω satisfies A_p condition:

Received November 21, 1986 Revised March 12, 1987