Токуо Ј. Матн. Vol. 10, No. 2, 1987

On a Degenerate Quasilinear Elliptic Equation with Mixed Boundary Conditions

Kazuya HAYASIDA and Yasuhiko KAWAI

Kanazawa University and Intelligence Business School of Kanazawa (Communicated by K. Kojima)

Introduction

Let Ω be a bounded simply connected domain in \mathbb{R}^n . The boundary $\partial \Omega$ is assumed to be of class C^1 . Let S be a compact C^1 manifold of dimension n-2 belonging to $\partial \Omega$. We assume that S divide $\partial \Omega$ into two non-empty relatively open subsets $\partial_1 \Omega$ and $\partial_2 \Omega$, more precisely,

$$\partial \Omega = \partial_1 \Omega \cup \partial_2 \Omega \cup S$$
, $\partial_1 \Omega \cap \partial_2 \Omega = \emptyset$.

We assume that the usual function spaces $C^{k}(\overline{\Omega})$, $C_{0}^{k}(\Omega)$, $L^{q}(\Omega)$, $W^{1,q}(\Omega)$, $W_{0}^{1,q}(\Omega)$ are known. The norm in $W^{1,q}(\Omega)$ ($L^{q}(\Omega)$) is written with $\| \|_{1,q}$ ($\| \|_{q}$), respectively. Throughout this paper let 2 , and let all functions be real-valued. We set

 $C_{(0)}^{1}(\overline{\Omega}) = \{ u \in C^{1}(\overline{\Omega}); u = 0 \text{ in a neighborhood of } \overline{\partial_{1}\Omega} \}.$

The completion of $C^1_{(0)}(\overline{\Omega})$ with respect to the norm $\| \|_{1,p}$ is denoted by $V(\Omega)$. The space $V(\Omega)$ is reflexive and separable. The norm in $V(\Omega)$ is denoted by $\| \|_{V}$. Let $V'(\Omega)$ be the dual space of $V(\Omega)$. As is well-known, Poincaré's inequality is valid for all functions in $V(\Omega)$, that is,

$$(0.1) ||u||_{p} \leq C ||\nabla u||_{p}, \quad u \in V(\Omega).$$

Hereafter let α be a real number such that

(0.2)
$$\begin{cases} \alpha \ge 0 & \text{when } p \ge n , \\ 0 \le \alpha \le \frac{n(p-1)}{n-p} - 1 & \text{when } p < n . \end{cases}$$

We denote by (,) the inner product in $L^2(\Omega)$. For $u \in V(\Omega)$ we define

Received November 20, 1986 Revised August 1, 1987