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Introduction

Let $b^{(n)}[x, u]$ be $R^{d}$-valued measurable functions defined on $R^{d}\times\ovalbox{\tt\small REJECT}(R^{d})$ ,
where $\ovalbox{\tt\small REJECT}(R^{d})$ denotes the space of probability distributions on $R^{d}$ . We
consider interacting diffusion processes on $R^{d}$ described by a system of
stochastic differential equations

(1) $X_{i}^{tn)}(t)=X^{(n)}(0)+B_{i}(t)+\int_{0}^{t}b^{(n)}[X_{i}^{(n)}(s), U^{(n)}(s)]ds$ , $i=1,2,$ $\cdots,$ $n$ ,

where $U^{(n}$
)
$(t)=(1/n)\sum_{i=1}^{n}\delta_{x_{i}^{(n)}(t)}$ is the empirical distribution of $(X_{1}^{(n)}(t),$ $\cdots$ ,

$X_{n}^{(n)}(t))$ and $B_{i}(t),$ $i=1,2,$ $\cdots,$ $n$ , are mutually independent d-dimensional
Brownian motions. The initial value $(X_{1}^{(n)}(0), \cdots, X_{n}^{(n)}(0))$ is always assumed
to be independent of the Brownian motions.

Assuming that the law of large numbers $U^{(n)}(t)\rightarrow u(t)$ and $b^{tn)}[X_{1}^{(n)}(t)$ ,
$U^{(n)}(t)]\rightarrow b[X(t), u(t)]$ hold as $ n\rightarrow\infty$ and taking the limit formally in (1)
for $i=1$ , we get the McKean-Vlasov’s SDE

(2) $X(t)=X(0)+B(t)+\int_{0}^{t}b[X(s), u(s)]ds$ ,

where $u(t)$ is the probability distribution of $X(t)$ .
The propagation of chaos for the diffusion processes $(X_{1}^{(n)}(t), \cdots , X_{n}^{(n)}(t))$

given by (1) states as follows: If the sequence of the initial distributions
in (1) is a symmetric u-chaotic family (see \S 2), then the sequence of the
distributions of $(X_{1}^{\{n})(t),$

$\cdots,$ $X_{n}^{(n)}(t))$ is also a symmetric $u(t)$-chaotic family,
where $u(t)$ is the probability distribution of $X(t)$ in (2) with a u-distributed
initial value $X(O)$ .

When the drift coefficient $b[x, u]=b^{(n)}[x, u],$ $n\geqq 1$ , is of average (or
integral) form defined by

(3) $b[x, u]=\int b(x, y)u(dy)$ ,
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