On Some Hypersurfaces of High-Dimensional Tori Related with the Riemann Zeta-Function

Kohji MATSUMOTO and Tetsuro MIYAZAKI

Rikkyo University and University of Tokyo
(Communicated by K. Katayama)

§1. Background of the problem.

Let $s=\sigma+i t$ be a complex variable, and $\zeta(s)$ the Riemann zeta-function. Bohr-Jessen [1] [2] discussed the value-distribution of $\zeta(s)$ on the line $\sigma=\sigma_{0}(>1 / 2)$, and proved the following result:

Let R be any closed rectangle in the complex plane with the edges parallel to the axes, and $L(T)$ the measure of the set

$$
\left\{t \in[0, T] \mid \log \zeta\left(\sigma_{0}+i t\right) \in R\right\}
$$

Then, there exists the limit $W=\lim (L(T) / T)$ as T tends to infinity, which depends only on σ_{0} and R. (In case $1 / 2<\sigma_{0} \leqq 1$, caused by the possibility of the existence of the zeros of $\zeta(\mathrm{s})$, there must be a slight modification.)

For proving this result, Bohr-Jessen introduced the set

$$
\Omega(R)=\Omega_{N}(R)=\left\{\left(\theta_{1}, \cdots, \theta_{N}\right) \in[0,1)^{N} \mid S_{N}\left(\theta_{1}, \cdots, \theta_{N}\right) \in R\right\}
$$

where N is a large positive integer, and

$$
S_{N}\left(\theta_{1}, \cdots, \theta_{N}\right)=-\sum_{n=1}^{N} \log \left(1-p_{n}^{-\sigma_{0}} \exp \left(2 \pi i \theta_{n}\right)\right)
$$

(p_{n} denotes the n-th prime number). In fact they showed that, if we denote the measure of the set $\Omega_{N}(R)$ by W_{N}, then W_{N} tends to W, as N tends to infinity.

Recently, the first-named author has tried to refine Bohr-Jessen's argument, and obtained, in case $\sigma_{0}>1$, the asymptotic formula

$$
L(T)=W T+O\left(T(\log \log (T))^{-\left(\sigma_{0}-1\right) / 7+\varepsilon}\right)
$$

[^0]
[^0]: Received January 29, 1986
 Revised February 4, 1987

