TOKYO J. MATH. Vol. 11, No. 1, 1988

Holomorphic Functions on the Complex Sphere

Ryoko WADA

Sophia University

(Communicated by N. Iwahori)

Introduction.

Let d be a positive integer and $d \ge 2$ (see Remark in §3 for d=0, 1). Let us denote by $\mathscr{O}(\mathbb{C}^{d+1})$ the space of entire functions on \mathbb{C}^{d+1} . Suppose λ is an arbitrary complex number and $\mathscr{O}_{\lambda}(\mathbb{C}^{d+1}) = \{f \in \mathscr{O}(\mathbb{C}^{d+1}); \Delta_z f = -\lambda^2 f\},$ where $\Delta_z = \sum_{j=1}^{d+1} (\partial/\partial z_j)^2$.

Let us consider the algebraic variety $M_{\rho} = \{z \in C^{d+1}; z^2 = \rho^2\}$, where $z^2 = \sum_{j=1}^{d+1} z_j^2$ and $\rho \in C$. If $\rho = 0$, M_0 is a complex cone and has a singularity at z=0. On the other hand if $\rho \neq 0$, M_{ρ} is a complex manifold and holomorphically diffeomorphic to the complex sphere $\tilde{S} = M_1 = \{z \in C^{d+1}; z^2 = 1\}$ by the transformation $z \rightarrow \rho z$. The space $\mathcal{O}(M_{\rho})$ of holomorphic functions on the analytic set M_{ρ} is equal to $\mathcal{O}(C^{d+1})|_{M_{\rho}}$ by the Oka-Cartan Theorem B.

Our first main result is as follows:

THEOREM 1. The restriction mapping $F \to F|_{M_{\rho}}$ is a linear topological isomorphism of $\mathcal{O}_{\lambda}(C^{d+1})$ onto $\mathcal{O}(M_{\rho})$ if

$$(*) \qquad (\lambda \rho/2)^{-n-(d-1)/2} J_{n+(d-1)/2}(\lambda \rho) \neq 0$$

holds for $n=0, 1, 2, \cdots$, where J_{ν} is the Bessel function of order ν .

If $\rho=0$, the condition (*) holds automatically and Theorem 1 was proved in [7] and [8]. The case $\rho\neq 0$ is proved in this paper (Theorem 2.1). Remark that Theorem 1 holds locally at the origin (see [9] for $\rho=0$ and Corollary 2.4 for $\rho\neq 0$). We may interpret Theorem 1 as saying that the set M_{ρ} is a uniqueness set for the differential operators $\Delta_z + \lambda^2$. We described in [10] a uniqueness set for more general linear partial differential operators of the second order with constant coefficients.

In [5] the space $\text{Exp}(\tilde{S})$ was defined to be the restriction to S of the space $\text{Exp}(C^{d+1})$ of entire functions of exponential type. But this defini-

Received June 30, 1987