Tokyo J. Math. Vol. 11, No. 1, 1988

2-Type Surfaces of Constant Curvature in S^n

Yoichiro MIYATA

Tokyo Metropolitan University (Communicated by K. Ogiue)

§0. Introduction.

Let M be a compact C^{∞} -Riemannian manifold, $C^{\infty}(M)$ the space of all smooth functions on M, and Δ the Laplacian on M. Then Δ is a self-adjoint elliptic differential operator acting on $C^{\infty}(M)$, which has an infinite discrete sequence of eigenvalues:

$$\operatorname{Spec}(M) = \{0 = \lambda_0 < \lambda_1 < \lambda_2 < \cdots < \lambda_k < \cdots \uparrow \infty\}$$
.

Let $V_k = V_k(M)$ be the eigenspace of Δ corresponding to the k-th eigenvalue λ_k . Then V_k is finite-dimensional. We define an inner product (,) on $C^{\infty}(M)$ by

$$(f, g) = \int_{\mathcal{M}} fg \, dV$$
,

where dV denotes the volume element on M. Then $\sum_{t=0}^{\infty} V_t$ is dense in $C^{\infty}(M)$ and the decomposition is orthogonal with respect to the inner product (,). Thus we have

$$C^{\infty}(M) = \sum_{t=0}^{\infty} V_t(M)$$
 (in L²-sense).

Since M is compact, V_0 is the set of all constant functions which is 1-dimensional.

Let \tilde{M} be another compact C^{∞} -Riemannian manifold, and assume that M is a submanifold of \tilde{M} which is immersed by an isometric immersion φ . We have the decomposition

$$C^{\infty}(\widetilde{M}) = \sum_{s=0}^{\infty} V_s(\widetilde{M})$$
 (in L²-sense)

with respect to the Laplacian $\Delta_{\widetilde{M}}$ of \widetilde{M} . We denote by φ^* the pull-back, Received June 26, 1987