Bloch Constants and Bloch Minimal Surfaces

Shinji YAMASHITA

Tokyo Metropolitan University

§ 1. Introduction.

The *n*-th Bloch constant b_n $(n \ge 2)$ will be defined in terms of radii of certain disks on minimal surfaces in the Euclidean space \mathbb{R}^n . As will be seen, b_2 is the familiar one in the complex analysis. We shall prove that

$$(1.1) b_n \ge n^{-1/2} b_2 , n \ge 3 .$$

Let each component x_i of a nonconstant map $x=(x_1, \dots, x_n)$ from the disk $D=\{|w|<1\}$ in the complex plane $|w|<\infty$, w=u+iv, into the Euclidean space R^n $(n\geq 2)$ be harmonic in D. Then, the set S of all pairs (w, x(w)), $w \in D$, or simply, the map x itself, is called a minimal surface if

$$(1.2) x_u x_v = 0 , x_u x_u = x_v x_v in D ,$$

where

$$x_u = (x_{1u}, \dots, x_{nu}), \qquad x_v = (x_{1v}, \dots, x_{nv})$$

are partial derivatives and the products are inner; S is the one-to-one image of D by x.

Henceforward, $x: D \to \mathbb{R}^n$ always means a minimal surface, and somewhat informally, we regard S as a subset of \mathbb{R}^n .

The surface S is endowed with the metric

$$d(x(w_1), x(w_2)) = \inf_{\tau} \int_{\tau} |x_u(w)| |dw|$$
 ,

where $x(w_j) \in S$, j=1, 2, $|x_u| = (x_u x_u)^{1/2}$ and γ ranges over all (rectifiable) curves connecting w_1 and w_2 in D. One can also consider this a new metric in D other than the Euclidean metric. Obviously, $|x(w_1) - x(w_2)| \le d(x(w_1), x(w_2))$; the left-hand side is the Euclidean metric in \mathbb{R}^n .