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Introduction.

A finite dimensional graded Lie algebra $\mathcal{G}=\sum \mathcal{G}_{k}$ over a field $F$ of
characteristic zero is said to be of the v-th kind, if $\mathcal{G}_{\pm k}=\{0\}$ for $ k>\nu$ .
Let $B:(x, y, z)\mapsto(xyz)$ be a triple operation on a vector space $U$ over $F$.
The operation $B$ is called a generalized Jordan triple system, if the equality
$(uv(xyz))=((uvx)yz)-(x(vuy)z)+(xy(uvz))$ is valid for $u,$ $v,$ $x,$ $y,$ $z\in U$. If,
in addition, the relation $(xyz)=(zyx)$ holds for $x,$ $y,$ $z\in U$, then $B$ is said
to be a Jordan triple system. Koecher [5] and Meyberg [7] studied in-
teresting relationship between Jordan triple systems with nondegenerate
trace forms and symmetric Lie algebras $(\mathcal{G}, \tau)$ ; here $\mathcal{G}$ is a semisimple
graded Lie algebra of the 1st kind with $\mathcal{G}_{0}=[\mathcal{G}_{-1}, \mathcal{G}_{1}]$ , and $\tau$ is a grade-
reversing involution of $\mathcal{G}$. Our main concern is to generalize this con-
nection to the case of generalized Jordan triple systems. It is known
(Kantor [3]) that to a generalized Jordan triple system $B$ on $U$ there cor-
responds a graded Lie algebra $-\mathscr{G}(B)=\sum U_{i}$ with $U_{-1}=U$. The triple
system $B$ is called of the v-th kind, if the graded Lie algebra $\mathscr{L}(B)$ is of
the v-th kind. Under a certain condition (A) for $B$ (cf. \S 1), $\mathscr{L}(B)$ admits
a grade-reversing involution $\tau_{B}$ . The pair $(\mathscr{L}(B), \tau_{B})$ is considered to be a
generalization of the symmetric Lie algebra corresponding to a Jordan
triple system. On the other hand, K. Yamaguti [8] introduced the bilinear
forms $\gamma_{B}$ for a wider class of triple systems. For a generalized Jordan
triple system $B$ , the form $\gamma_{B}$ is symmetric, and, as is seen in the present
paper, it plays the same role as the trace form for a Jordan triple system
does. Now suppose $B$ is of the 2nd kind. The first aim of this paper
is to prove the following implications (Propositions 2.4, 2.5, 2.10 and
Theorem 2.8):
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