Токуо Ј. Матн. Vol. 11, No. 1, 1988

On Compact Generalized Jordan Triple Systems of the Second Kind

Hiroshi ASANO and Soji KANEYUKI

Yokohama City University and Sophia University

Dedicated to Professor Nagayoshi Iwahori on his sixtieth birthday

Introduction.

A finite dimensional graded Lie algebra $\mathcal{G} = \sum \mathcal{G}_k$ over a field F of characteristic zero is said to be of the ν -th kind, if $\mathscr{G}_{\pm k} = \{0\}$ for $k > \nu$. Let $B: (x, y, z) \mapsto (xyz)$ be a triple operation on a vector space U over F. The operation B is called a generalized Jordan triple system, if the equality (uv(xyz)) = ((uvx)yz) - (x(vuy)z) + (xy(uvz)) is valid for $u, v, x, y, z \in U$. If, in addition, the relation (xyz) = (zyx) holds for x, y, $z \in U$, then B is said to be a Jordan triple system. Koecher [5] and Meyberg [7] studied interesting relationship between Jordan triple systems with nondegenerate trace forms and symmetric Lie algebras (G, τ); here G is a semisimple graded Lie algebra of the 1st kind with $\mathcal{G}_0 = [\mathcal{G}_{-1}, \mathcal{G}_1]$, and τ is a gradereversing involution of \mathcal{G} . Our main concern is to generalize this connection to the case of generalized Jordan triple systems. It is known (Kantor [3]) that to a generalized Jordan triple system B on U there corresponds a graded Lie algebra $\mathcal{L}(B) = \sum U_i$ with $U_{-1} = U$. The triple system B is called of the ν -th kind, if the graded Lie algebra $\mathcal{L}(B)$ is of the ν -th kind. Under a certain condition (A) for B (cf. § 1), $\mathcal{L}(B)$ admits a grade-reversing involution τ_B . The pair $(\mathcal{L}(B), \tau_B)$ is considered to be a generalization of the symmetric Lie algebra corresponding to a Jordan triple system. On the other hand, K. Yamaguti [8] introduced the bilinear forms γ_B for a wider class of triple systems. For a generalized Jordan triple system B, the form γ_B is symmetric, and, as is seen in the present paper, it plays the same role as the trace form for a Jordan triple system does. Now suppose B is of the 2nd kind. The first aim of this paper is to prove the following implications (Propositions 2.4, 2.5, 2.10 and Theorem 2.8):

Received April 20, 1987