Токуо Ј. Матн. Vol. 11, No. 2, 1988

K-Groups and λ -Invariants of Algebraic Number Fields

Keiichi KOMATSU

Tokyo University of Agriculture and Technology (Communicated by H. Wada)

Dedicated to the late Professor Suguru Hamada

Introduction.

Let F be a totally real algebraic number field, O_F the integer ring of F and $K_m(O_F)$ Quillen's higher K-group of O_F for each non-negative integer m. According to Quillen [8], $K_m(O_F)$ is a finite abelian group for even m=2n $(n\geq 1)$. Let p be an odd prime number and F' a Galois pextension of F. In this paper, we investigate whether the prime p divides the order of $K_{2n}(O_{F'})$. (The order of $K_2(O_{F'})$ has been treated by several authors [2], [4], [9].) We shall state our main theorem in §1. In §2, we prove group-theoretical lemmas on \mathbb{Z}_p -modules on which a finite group acts, whose order is prime to p.

In the final part §3, we prove our main theorem in using first a result of Soulé, according to which we translate the language of K-theory into that of Iwasawa theory, then a result of Iwasawa (Lemma 4), with the help of which we refine Kida's formula (Lemma 5), which leads immediately to our theorem.

§1. Main theorem.

Throughout the following, let p be a fixed odd prime number. For a finite algebraic number field F, we denote by F_{∞} the cyclotomic \mathbb{Z}_{p} extension of F.

THEOREM. Let F be a totally real algebraic number field of finite degree, F' a Galois p-extension of F, ζ a primitive p-th root of 1 and n an odd positive integer. Let k denote $F(\zeta)$ and d the degree (k:F). We assume that the μ -invariant μ_k of k_{∞}/k is zero. Then we have the

Received July 20, 1987 Revised January 27, 1988